Ondes progressives pour l’équation de Gross-Pitaevskii
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 15, 28 p.

Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.

Béthuel, Fabrice 1 ; Gravejat, Philippe 2 ; Saut, Jean-Claude 3

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France
2 Centre de Recherche en Mathématiques de la Décision, Université Paris Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France
3 Laboratoire de Mathématiques, Université Paris Sud, Bâtiment 425, 91405 Orsay Cedex, France
@article{SEDP_2007-2008____A15_0,
     author = {B\'ethuel, Fabrice and Gravejat, Philippe and Saut, Jean-Claude},
     title = {Ondes progressives pour l{\textquoteright}\'equation de {Gross-Pitaevskii}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:15},
     pages = {1--28},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     language = {fr},
     url = {http://archive.numdam.org/item/SEDP_2007-2008____A15_0/}
}
TY  - JOUR
AU  - Béthuel, Fabrice
AU  - Gravejat, Philippe
AU  - Saut, Jean-Claude
TI  - Ondes progressives pour l’équation de Gross-Pitaevskii
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:15
PY  - 2007-2008
SP  - 1
EP  - 28
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2007-2008____A15_0/
LA  - fr
ID  - SEDP_2007-2008____A15_0
ER  - 
%0 Journal Article
%A Béthuel, Fabrice
%A Gravejat, Philippe
%A Saut, Jean-Claude
%T Ondes progressives pour l’équation de Gross-Pitaevskii
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:15
%D 2007-2008
%P 1-28
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2007-2008____A15_0/
%G fr
%F SEDP_2007-2008____A15_0
Béthuel, Fabrice; Gravejat, Philippe; Saut, Jean-Claude. Ondes progressives pour l’équation de Gross-Pitaevskii. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 15, 28 p. http://archive.numdam.org/item/SEDP_2007-2008____A15_0/

[1] F. Béthuel, P. Gravejat, and J.-C. Saut. Existence and properties of travelling waves for the Gross-Pitaevskii equation. Preprint.

[2] F. Béthuel, P. Gravejat, and J.-C. Saut. On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves. Preprint.

[3] F. Béthuel, P. Gravejat, and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation II. Preprint.

[4] F. Béthuel, G. Orlandi, and D. Smets. Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc., 6(1) :17–94, 2004. | MR | Zbl

[5] F. Béthuel and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation I. Ann. Inst. Henri Poincaré, Physique Théorique, 70(2) :147–238, 1999. | Numdam | MR | Zbl

[6] F. Béthuel and D. Smets. A remark on the Cauchy problem for the 2D Gross-Pitaevskii equation with non zero degree at infinity. Differential Integral Equations, 20(3) :325–338, 2007. | MR

[7] D. Chiron. Travelling waves for the Gross-Pitaevskii equation in dimension larger than two. Nonlinear Anal., 58(1-2) :175–204, 2004. | MR | Zbl

[8] D. Chiron. Boundary problems for the Ginzburg-Landau equation. Commun. Contemp. Math., 7(5) :597–648, 2005. | MR | Zbl

[9] D. Chiron. Vortex helices for the Gross-Pitaevskii equation. J. Math. Pures Appl., 84(11) :1555–1647, 2005. | MR

[10] C. Coste. Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B, 1 :245–253, 1998. | MR

[11] A. de Bouard and J.-C. Saut. Remarks on the stability of generalized KP solitary waves. In Mathematical problems in the theory of water waves (Luminy, 1995), volume 200 of Contemp. Math., pages 75–84. Amer. Math. Soc., Providence, RI, 1996. | MR | Zbl

[12] A. de Bouard and J.-C. Saut. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 14(2) :211–236, 1997. | EuDML | Numdam | MR | Zbl

[13] A. de Bouard and J.-C. Saut. Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. Anal., 28(5) :1064–1085, 1997. | MR | Zbl

[14] A. Farina. From Ginzburg-Landau to Gross-Pitaevskii. Monatsh. Math., 139 :265–269, 2003. | MR | Zbl

[15] C. Gallo. The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity. Preprint.

[16] C. Gallo. The dark solitons of the one-dimensional nonlinear Schrödinger equation. Preprint.

[17] P. Gérard. The Cauchy problem for the Gross-Pitaevskii equation. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 23(5) :765–779, 2006. | EuDML | Numdam | MR | Zbl

[18] P. Gérard. The Gross-Pitaevskii equation in the energy space. Preprint.

[19] V.L. Ginzburg and L.P. Pitaevskii. On the theory of superfluidity. Sov. Phys. JETP, 34 :1240, 1958. | MR

[20] O. Goubet. Two remarks on solutions of Gross-Pitaevskii equations on Zhidkov spaces. Monatsh. Math., 151(1) :39–44, 2007. | MR | Zbl

[21] P. Gravejat. Limit at infinity for travelling waves in the Gross-Pitaevskii equation. C. R. Math. Acad. Sci. Paris, 336(2) :147–152, 2003. | MR

[22] P. Gravejat. A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation. Commun. Math. Phys., 243(1) :93–103, 2003. | MR | Zbl

[23] P. Gravejat. Decay for travelling waves in the Gross-Pitaevskii equation. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 21(5) :591–637, 2004. | EuDML | Numdam | MR | Zbl

[24] P. Gravejat. Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation. Differential Integral Equations, 17(11-12) :1213–1232, 2004. | MR

[25] P. Gravejat. Asymptotics for the travelling waves in the Gross-Pitaevskii equation. Asymptot. Anal., 45(3-4) :227–299, 2005. | MR | Zbl

[26] P. Gravejat. First order asymptotics for the travelling waves in the Gross-Pitaevskii equation. Adv. Differential Equations, 11(3) :259–280, 2006. | MR | Zbl

[27] E.P. Gross. Hydrodynamics of a superfluid condensate. J. Math. Phys., 4(2) :195–207, 1963.

[28] S. Gustafson, K. Nakanishi, and T.-P. Tsai. Scattering for the Gross-Pitaevskii equation. Math. Res. Lett., 13(2) :273–285, 2006. | MR | Zbl

[29] S. Gustafson, K. Nakanishi, and T.-P. Tsai. Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré, 8(7) :1303–1331, 2007. | MR

[30] S.V. Iordanskii and A.V. Smirnov. Three-dimensional solitons in He II. JETP Lett., 27(10) :535–538, 1978.

[31] C.A. Jones, S.J. Putterman, and P.H. Roberts. Motions in a Bose condensate V. Stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions. J. Phys. A, Math. Gen., 19 :2991–3011, 1986.

[32] C.A. Jones and P.H. Roberts. Motions in a Bose condensate IV. Axisymmetric solitary waves. J. Phys. A, Math. Gen., 15 :2599–2619, 1982.

[33] B.B. Kadomtsev and V.I. Petviashvili. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl., 15(6) :539–541, 1970. | Zbl

[34] Y.S. Kivshar and B. Luther-Davies. Dark optical solitons : physics and applications. Phys. Rep., 298 :81–197, 1998.

[35] Zhiwu Lin. Stability and instability of traveling solitonic bubbles. Adv. Differential Equations, 7(8) :897–918, 2002. | MR | Zbl

[36] O. Lopes. A constrained minimization problem with integrals on the entire space. Bol. Soc. Bras. Mat., 25(1) :77–92, 1994. | MR | Zbl

[37] E. Madelung. Quantumtheorie in Hydrodynamische form. Zts. f. Phys., 40 :322–326, 1926.

[38] M. Maris. Stationary solutions to a nonlinear Schrödinger equation with potential in one dimension. Proc. Roy. Soc. Edinb. A, 133(2) :409–437, 2003. | MR | Zbl

[39] K. Nakanishi. Scattering theory for the Gross-Pitaevskii equation. Preprint.

[40] L.P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13(2) :451–454, 1961.

[41] É. Tarquini. A lower bound on the energy of travelling waves of fixed speed for the Gross-Pitaevskii equation. Monatsh. Math., 151(4) :333–339, 2007. | MR | Zbl

[42] T. Tsuzuki. Nonlinear waves in the Pitaevskii-Gross equation. J. Low Temp. Phys., 4(4) :441–457, 1971.

[43] P.E. Zhidkov. Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, volume 1756 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001. | MR | Zbl