Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 16, 19 p.

Nous présentons une introduction à un nouveau champ de recherche, l’hypocoercitivité. Nous énonçons quelques résultats obtenus récemment avec différents co-auteurs (Lukas Neumann, Jean Dolbeault, Christian Schmeiser) dans le cas des équations cinétiques collisionnelles, en particulier pour les équations de type Boltzmann. Puis nous présentons quelques perspectives de recherche à plus long terme, dans le but de dégager une théorie unifiée de l’hypocoercitivité en théorie cinétique collisionnelle.

@article{SEDP_2007-2008____A16_0,
     author = {Mouhot, Cl\'ement},
     title = {Quelques r\'esultats d'hypocoercitivit\'e en th\'eorie cin\'etique collisionnelle},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     note = {talk:16},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A16_0}
}
Mouhot, Clément. Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle. Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 16, 19 p. http://www.numdam.org/item/SEDP_2007-2008____A16_0/

[1] R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal. 152 (2000), no. 4, 327–355. MR 2001c :82061 | MR 1765272 | Zbl 0968.76076

[2] R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 1, 61–95. MR MR2037247 (2005f :82126) | Numdam | MR 2037247 | Zbl 1044.83007

[3] A. A. Arsenʼev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Mat. Sb. 181 (1990), no. 4, 435–446. MR MR1055522 (91f :35266) | MR 1055522 | Zbl 0713.35075

[4] Céline Baranger and Clément Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana 21 (2005), no. 3, 819–841. MR MR2231011 (2007f :82031) | MR 2231011 | Zbl 1092.76057

[5] A. V. Bobylëv, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Mathematical physics reviews, Vol. 7, Harwood Academic Publ., Chur, 1988, pp. 111–233. MR 92m :82112 | MR 1128328 | Zbl 0850.76619

[6] A. V. Bobylev, P. Dukes, R. Illner, and H. D. Victory, Jr., On Vlasov-Manev equations. I. Foundations, properties, and nonglobal existence, J. Statist. Phys. 88 (1997), no. 3-4, 885–911. MR 98j :85001 | MR 1467635 | Zbl 0917.45007

[7] Alexander V. Bobylev and Carlo Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys. 94 (1999), no. 3-4, 603–618. MR 2000f :82083 | MR 1675366 | Zbl 0958.82040

[8] Russel E. Caflisch, The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Comm. Math. Phys. 74 (1980), no. 1, 71–95. MR 82j :82040a | MR 575897 | Zbl 0434.76065

[9] Russel E. Caflisch and Basil Nicolaenko, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys. 86 (1982), no. 2, 161–194. MR MR676183 (84d :82022) | MR 676183 | Zbl 0544.76063

[10] T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Almqvist & Wiksell, 1957. | MR 98477 | Zbl 0077.23401

[11] E. A. Carlen and M. C. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Statist. Phys. 67 (1992), no. 3-4, 575–608. MR MR1171145 (93h :82049) | MR 1171145 | Zbl 0899.76317

[12] —, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Statist. Phys. 74 (1994), no. 3-4, 743–782. MR MR1263387 (95g :82073) | MR 1263387 | Zbl 0831.76074

[13] P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Rational Mech. Anal. 138 (1997), no. 2, 137–167. MR 99f :82051 | MR 1463805 | Zbl 0888.35084

[14] P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci. 2 (1992), no. 2, 167–182. MR MR1167768 (93g :82083) | MR 1167768 | Zbl 0755.35091

[15] L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations, Comm. Math. Phys. 123 (1989), no. 4, 687–702. MR MR1006301 (90g :82050) | MR 1006301 | Zbl 0688.76057

[16] —, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys. 21 (1992), no. 3, 259–276. MR MR1165528 (93h :82051) | MR 1165528 | Zbl 0769.76059

[17] L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : the linear Fokker-Planck equation, Comm. Pure Appl. Math. 54 (2001), no. 1, 1–42. MR MR1787105 (2001h :82079) | MR 1787105 | Zbl 1029.82032

[18] —, On the trend to global equilibrium for spatially inhomogeneous kinetic systems : the Boltzmann equation, Invent. Math. 159 (2005), no. 2, 245–316. MR MR2116276 (2005j :82070) | MR 2116276 | Zbl pre02156016

[19] Laurent Desvillettes, Une minoration du terme de dissipation d’entropie pour le modèle de Kac de la cinétique des gaz, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 307 (1988), no. 19, 1955–1960. MR MR980768 (90g :82051) | Zbl 0657.76067

[20] Laurent Desvillettes and Clément Mouhot, Stability and uniqueness for the spatially homogeneous boltzmann equation with long-range interactions, To appear in Arch. Rational Mech. Anal., arXiv :0606307.

[21] Jean Dolbeault, Peter Markowich, Dietmar Oelz, and Christian Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal. 186 (2007), no. 1, 133–158. MR MR2338354 | MR 2338354

[22] Jean Dolbeault, Clément Mouhot, and Christian Schmeiser, Hypocoercivity and stability for a class kinetic models with mass conservation and a confining potential, In preparation, 2008.

[23] J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235 (2003), no. 2, 233–253. MR MR1969727 (2004c :35060) | MR 1969727 | Zbl 1040.35016

[24] Richard S. Ellis and Mark A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl. (9) 54 (1975), 125–156. MR 58 #29430b | MR 609540 | Zbl 0286.35062

[25] Nicolas Fournier, Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff, J. Stat. Phys. 125 (2006), no. 4, 927–946. MR MR2283785 (2007i :82067) | MR 2283785 | Zbl 1107.82045

[26] Nicolas Fournier and Clément Mouhot, On the well-posedness of the spatially homogeneous boltzmann equation with a moderate angular singularity, Preprint 2007, arXiv :0703283.

[27] François Golse and Frédéric Poupaud, Un résultat de compacité pour l’équation de Boltzmann avec potentiel mou. Application au problème de demi-espace, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 12, 583–586. MR 87m :35190 | Zbl 0604.76067

[28] Harold Grad, Asymptotic theory of the Boltzmann equation. II, Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I, Academic Press, New York, 1963, pp. 26–59. MR 27 #6577

[29] Hélène Guérin and Nicolas Fournier, On the uniqueness for the spatially homogeneous boltzmann equation with a strong angular singularity, To appear in J. Stat. Phys., arXiv :0710.2460. | MR 2398952 | Zbl pre05294525

[30] Yan Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), no. 3, 391–434. MR MR1946444 (2004c :82121) | MR 1946444 | Zbl 1042.76053

[31] —, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (2002), no. 9, 1104–1135. MR MR1908664 (2003b :82050) | MR 1908664 | Zbl 1027.82035

[32] —, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305–353. MR MR2013332 (2004i :82054) | MR 2013332 | Zbl 1044.76056

[33] —, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630. MR MR2000470 (2004m :82123) | MR 2000470 | Zbl 1029.82034

[34] —, The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004), no. 4, 1081–1094. MR MR2095473 (2005g :35028) | MR 2095473 | Zbl 1065.35090

[35] Bernard Helffer and Francis Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. MR MR2130405 (2006a :58039) | MR 2130405 | Zbl 1072.35006

[36] Frédéric Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal. 46 (2006), no. 3-4, 349–359. MR MR2215889 (2007b :35044) | MR 2215889 | Zbl 1096.35019

[37] Frédéric Hérau and Francis Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), no. 2, 151–218. MR MR2034753 (2005f :82085) | MR 2034753 | Zbl pre02102293

[38] D. Hilbert, Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen, Math. Ann. 72 (1912), Chelsea Publ., New York, 1953. | MR 56184 | Zbl 0050.10201

[39] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR MR0222474 (36 #5526) | MR 222474 | Zbl 0156.10701

[40] M. Klaus, Boltzmann collision operator without cut-off, Helv. Phys. Acta 50 (1977), no. 6, 893–903. MR 58 #25683 | MR 523550

[41] Pierre-Louis Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 1, 37–41. MR 99h :82062 | MR 1649477 | Zbl 0920.35114

[42] Tai-Ping Liu, Tong Yang, and Shih-Hsien Yu, Energy method for Boltzmann equation, Phys. D 188 (2004), no. 3-4, 178–192. MR MR2043729 (2005a :82091) | MR 2043729 | Zbl 1098.82618

[43] Tai-Ping Liu and Shih-Hsien Yu, Boltzmann equation : micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246 (2004), no. 1, 133–179. MR MR2044894 (2005f :82101) | MR 2044894 | Zbl 1092.82034

[44] —, The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math. 57 (2004), no. 12, 1543–1608. MR MR2082240 (2005m :82132) | Zbl 1111.76047

[45] —, Green’s function of Boltzmann equation, 3-D waves, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 1, 1–78. MR MR2230121 (2007k :82116) | Zbl 1096.76051

[46] N. B. Maslova and A. N. Firsov, Solution of the Cauchy problem for the Boltzmann equation. I. Existence and uniqueness theorem, Vestnik Leningrad. Univ. (1975), no. 19 Mat. Meh. Astronom. vyp. 4, 83–88, 168. MR MR0406280 (53 #10071) | MR 406280 | Zbl 0325.76105

[47] —, Solution of the Cauchy problem for the Boltzmann equation. II. Estimates of the solutions of the nonhomogeneous linearized equation, Vestnik Leningrad. Univ. (1976), no. 1 Mat. Meh. Astronom. vyp. 1, 97–103, 162. MR MR0438914 (55 #11818) | MR 438914 | Zbl 0371.76062

[48] Clément Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1321–1348. MR MR2254617 (2007h :35020) | MR 2254617 | Zbl 1101.76053

[49] —, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys. 261 (2006), no. 3, 629–672. MR MR2197542 (2006k :82134) | MR 2197542 | Zbl 1113.82062

[50] Clément Mouhot and Lukas Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity 19 (2006), no. 4, 969–998. MR MR2214953 (2007c :82032) | MR 2214953 | Zbl pre05053322

[51] Clément Mouhot and Robert M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515–535. MR MR2322149 (2008g :82116) | MR 2322149 | Zbl pre05163855

[52] Takaaki Nishida and Kazuo Imai, Global solutions to the initial value problem for the nonlinear Boltzmann equation, Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 1, 229–239. MR MR0432105 (55 #5096) | MR 432105 | Zbl 0344.35003

[53] Young Ping Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, II, Comm. Pure Appl. Math. 27 (1974), 407–428 ; ibid. 27 (1974), 559–581. MR MR0636407 (58 #30519) | MR 636407 | Zbl 0304.45010

[54] Yasushi Shizuta, On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math. 36 (1983), no. 6, 705–754. MR MR720591 (85e :76043) | MR 720591 | Zbl 0515.35002

[55] Yasushi Shizuta and Kiyoshi Asano, Global solutions of the Boltzmann equation in a bounded convex domain, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 1, 3–5. MR MR0466988 (57 #6861) | MR 466988 | Zbl 0382.35047

[56] Robert M. Strain and Yan Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys. 251 (2004), no. 2, 263–320. MR MR2100057 (2005m :82155) | MR 2100057 | Zbl 1113.82070

[57] —, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations 31 (2006), no. 1-3, 417–429. MR MR2209761 (2006m :82042) | MR 2209761 | Zbl 1096.82010

[58] —, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287–339. MR MR2366140 | MR 2366140 | Zbl 1130.76069

[59] G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys. 203 (1999), no. 3, 667–706. MR MR1700142 (2000e :82039) | MR 1700142 | Zbl 0944.35066

[60] —, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys. 98 (2000), no. 5-6, 1279–1309. MR MR1751701 (2001g :82069) | MR 1751701 | Zbl 1034.82032

[61] Seiji Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad. 50 (1974), 179–184. MR MR0363332 (50 #15770) | MR 363332 | Zbl 0312.35061

[62] —, Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 6, Ai, A317–A320. MR MR0445138 (56 #3482) | Zbl 0345.45012

[63] Cédric Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal. 143 (1998), no. 3, 273–307. MR MR1650006 (99j :82065) | MR 1650006 | Zbl 0912.45011

[64] —, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana 15 (1999), no. 2, 335–352. MR 2000f :82090 | MR 1715411 | Zbl 0934.45010

[65] —, Contribution à l’étude mathématique des collisions en théorie cinétique, Master’s thesis, Univ. Paris Dauphine, France, 2000.

[66] —, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71–305. MR MR1942465 (2003k :82087) | MR 1942465 | Zbl pre01942873

[67] —, Cercignani’s conjecture is sometimes true and always almost true, Comm. Math. Phys. 234 (2003), no. 3, 455–490. MR 2004b :82048 | Zbl 1041.82018

[68] —, Hypocoercivity, To appear, 2008.

[69] C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, Studies in Statistical Mechanics, Vol. V, North-Holland, Amsterdam, 1970. MR 29 #6881