Propagation of analytic singularities for the Schrödinger Equation
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 18, 14 p.
@article{SEDP_2007-2008____A18_0,
     author = {Martinez, Andr\'e and Nakamura, Shu and Sordoni, Vania},
     title = {Propagation of analytic singularities for the Schr\"odinger Equation},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     note = {talk:18},
     mrnumber = {2532953},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A18_0}
}
Martinez, André; Nakamura, Shu; Sordoni, Vania. Propagation of analytic singularities for the Schrödinger Equation. Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 18, 14 p. http://www.numdam.org/item/SEDP_2007-2008____A18_0/

[BoTz] Bouclet, J.M., Tzvetkov, N., Strichartz estimates for long range perturbations, Amer. J. Math. vol 129, no. 6 (2007) | MR 2369889 | Zbl pre05226258

[BGT] Burq, N., Gérard, P., Tzvetkov, N. Strichartz inequalities and the non-linear Schrödinger equation on compact manifolds, Am. J. Math. 126 (2004), 569–605. | MR 2058384 | Zbl 1067.58027

[CKS] Craig, W., Kappeler, T., Strauss, W., Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pures Appl. Math. 48 (1996), 769–860. | MR 1361016 | Zbl 0856.35106

[Do1] Doi, S., Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000), 355–389. | MR 1795567 | Zbl 0969.35029

[Do2] Doi, S., Singularities of solutions of Schrödinger equations for perturbed harmonic oscillators, Hyperbolic problems and related topics, Grad. Ser. Anal. 185–199, Int. Press, Somerville, MA, 2003. | MR 2056850 | Zbl 1047.35007

[GiVe] Ginibre, J., Velo, G., Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 144 (1992), 163–188. | MR 1151250 | Zbl 0762.35008

[HaWu] Hassel, A., Wunsch, J., The Schrödinger propagator for scattering metrics, Annals of Mathematics, 162 (2005) | MR 2178967 | Zbl 1126.58016

[HaKa1] Hayashi, N., Kato, K., Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. H. Poincaré, Phys. Théo. 52 (1990), 163–173. | Numdam | MR 1051235 | Zbl 0731.35047

[HaKa2] Hayashi, N., Kato, K., Analyticity in time and Smoothing effect of solutions to nonlinear Schrödinger equations, Comm. Math. Phys. 184 (1997), 273–300. | MR 1462747 | Zbl 0871.35087

[It] Ito, K.: Propagation of Singularities for Schrödinger Equations on the Euclidean Space with a Scattering Metric, Comm. P. D. E., 31 (12), 1735–1777 (2006). | MR 2273972 | Zbl 1117.35005

[KaWa] Kajitani, K., Wakabayashi, S., Analytic smoothing effect for Schrödinger type equations with variable coefficients, in: Direct and Inverse Problems of Mathematical Physics (Newark, DE 1997), Int. Soc. Anal. Comput. 5, Kluwer Acad. Publ. (Dordracht, 2000), 185–219. | MR 1766299 | Zbl 1043.35055

[KRY] Kapitanski, L., Rodnianski, I., Yajima, K., On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal. 9 (1997), 77–106. | MR 1483643 | Zbl 0892.35035

[KaSa] Kapitanski, L., Safarov, Y., Dispersive smoothing for Schrödinger equations, Math. Res. Letters 3 (1996), 77–91. | MR 1393385 | Zbl 0860.35016

[KaTa] Kato, K., Taniguchi, K., Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math 33 (1996), 863–880. | MR 1435458 | Zbl 0876.35109

[KaYa] Kato, T., Yajima, K., Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), 481–496. | MR 1061120 | Zbl 0833.47005

[KPV] Kenig, C., Ponce, G., Vega, L., Oscillatory integrals and regularity of dispersive equations, Ind. Univ. Math. J. 40 (1991), 33–69. | MR 1101221 | Zbl 0738.35022

[Ma] Martinez, A., An Introduction to Semiclassical and Microlocal Analysis, UTX Series, Springer-Verlag New-York, 2002. | MR 1872698 | Zbl 0994.35003

[MNS1] Martinez, A., Nakamura, S., Sordoni, V., Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math. 59 (2006), 1330–1351. | MR 2237289 | Zbl 1122.35027

[MNS2] Martinez, A., Nakamura, S., Sordoni, V., Analytic wave front set for solutions to Schrödinger equations, Preprint 2007.

[Mec] Mechergui, C., Equivalence between the analytic quadratic scattering wave front set and analytic homogeneus wave front set, Preprint 2007.

[Mel] Melrose, R. B., Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992), Dekker, New York, 1994, pp. 85TH130. | MR 1291640 | Zbl 0837.35107

[MRZ] Morimoto, Y., Robbiano, L., Zuily, C., Remark on the smoothing for the Schrödinger equation, Indiana University Mathematic Journal 49 (2000), 1563–1579. | MR 1838302 | Zbl 0987.35009

[Na1] Nakamura, S., Propagation of the Homogeneous Wave Front Set for Schrödinger Equations, Duke Math. J. 126, 349-367 (2005). | MR 2115261 | Zbl 1130.35023

[Na2] Nakamura, S., Wave front set for solutions to Schrödinger equations, Preprint 2004

[Na3] Nakamura, S.: Semiclassical singularity propagation property for Schrödinger equations, Preprint 2006 (http://www.arxiv.org/abs/math.AP/0605742), to appear in J. Math. Soc. Japan.

[Ro] Robert, S., Autour de l’Approximation Semi-Classique, Birkhäuser (1987) | Zbl 0621.35001

[RoZu1] Robbiano, L., Zuily, C., Microlocal analytic smoothing effect for Schrödinger equation, Duke Math. J. 100 (1999), 93–129. | MR 1714756 | Zbl 0941.35014

[RoZu2] Robbiano, L., Zuily, C., Effet régularisant microlocal analytique pour l’équation de Schrödinger: le cas des données oscillantes, Comm. Partial Differential Equations 100 (2000) 1891–1906. | Zbl 0959.35007

[RoZu3] Robbiano, L., Zuily, C., Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation, Soc. Math. France, Astérisque 283 (2002), 1–128. | MR 1958605 | Zbl 1029.35001

[RoZu4] Robbiano, L., Zuily, C., Strichartz estimates for Schrödinger equations with variable coefficients, Mem. Soc. Math. France (N.S.) 101-102 (2005) | Numdam | MR 2193021 | Zbl 1097.35002

[Sj] Sjöstrand, J., Singularités analytiques microlocales, Soc. Math. France, Astérisque 95 (1982), 1–166. | MR 699623 | Zbl 0524.35007

[StTa] Staffilani, G., Tataru, D., Strichartz estimates for a Schrödinger operator with non smooth coefficients, Com. P. D. E. 27 (2002), 1337–1372 | MR 1924470 | Zbl 1010.35015

[Wu] Wunsch, J., Propagation of singularities and growth for Schrödinger operators, Duke Math. J. 98 (1999), 137-186. | MR 1687567 | Zbl 0953.35121

[Yaj1] Yajima, K., On smoothing property of Schrödinger propagators. Functional-Analytic Methods for Partial Differential Equations, Lecture Notes in Math., 1450 (1990), 20–35, Springer, Berlin. | MR 1084599 | Zbl 0725.35084

[Yaj2] Yajima, K., Schrödinger evolution equations and associated smoothing effect, Rigorous Results in Quantum Dynamics, World Sci. Publishing, River Edge, NJ, 1991, 167–185. | MR 1243040

[Yam] Yamazaki, M., On the microlocal smoothing effect of dispersive partial differential equations, Algebraic Analysis Vol. II, 911–926, Academic Press, Boston, MA,1988. | MR 992503 | Zbl 0683.35010

[Ze] Zelditch, S., Reconstruction of singularities for solutions of Schrödinger equation, Comm. Math. Phys. 90 (1983), 1–26. | MR 714610 | Zbl 0554.35031