Propagation of analytic singularities for the Schrödinger Equation
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Talk no. 18, 14 p.
Martinez, André 1; Nakamura, Shu 2; Sordoni, Vania 1

1 Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40127 Bologna, Italy
2 Graduate School of Mathematical Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan 153-8914
@article{SEDP_2007-2008____A18_0,
     author = {Martinez, Andr\'e and Nakamura, Shu and Sordoni, Vania},
     title = {Propagation of analytic singularities for the {Schr\"odinger} {Equation}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:18},
     pages = {1--14},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     mrnumber = {2532953},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_2007-2008____A18_0/}
}
TY  - JOUR
AU  - Martinez, André
AU  - Nakamura, Shu
AU  - Sordoni, Vania
TI  - Propagation of analytic singularities for the Schrödinger Equation
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:18
PY  - 2007-2008
SP  - 1
EP  - 14
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2007-2008____A18_0/
LA  - en
ID  - SEDP_2007-2008____A18_0
ER  - 
%0 Journal Article
%A Martinez, André
%A Nakamura, Shu
%A Sordoni, Vania
%T Propagation of analytic singularities for the Schrödinger Equation
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:18
%D 2007-2008
%P 1-14
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2007-2008____A18_0/
%G en
%F SEDP_2007-2008____A18_0
Martinez, André; Nakamura, Shu; Sordoni, Vania. Propagation of analytic singularities for the Schrödinger Equation. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Talk no. 18, 14 p. http://archive.numdam.org/item/SEDP_2007-2008____A18_0/

[BoTz] Bouclet, J.M., Tzvetkov, N., Strichartz estimates for long range perturbations, Amer. J. Math. vol 129, no. 6 (2007) | MR

[BGT] Burq, N., Gérard, P., Tzvetkov, N. Strichartz inequalities and the non-linear Schrödinger equation on compact manifolds, Am. J. Math. 126 (2004), 569–605. | MR | Zbl

[CKS] Craig, W., Kappeler, T., Strauss, W., Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pures Appl. Math. 48 (1996), 769–860. | MR | Zbl

[Do1] Doi, S., Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000), 355–389. | MR | Zbl

[Do2] Doi, S., Singularities of solutions of Schrödinger equations for perturbed harmonic oscillators, Hyperbolic problems and related topics, Grad. Ser. Anal. 185–199, Int. Press, Somerville, MA, 2003. | MR | Zbl

[GiVe] Ginibre, J., Velo, G., Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 144 (1992), 163–188. | MR | Zbl

[HaWu] Hassel, A., Wunsch, J., The Schrödinger propagator for scattering metrics, Annals of Mathematics, 162 (2005) | MR | Zbl

[HaKa1] Hayashi, N., Kato, K., Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. H. Poincaré, Phys. Théo. 52 (1990), 163–173. | Numdam | MR | Zbl

[HaKa2] Hayashi, N., Kato, K., Analyticity in time and Smoothing effect of solutions to nonlinear Schrödinger equations, Comm. Math. Phys. 184 (1997), 273–300. | MR | Zbl

[It] Ito, K.: Propagation of Singularities for Schrödinger Equations on the Euclidean Space with a Scattering Metric, Comm. P. D. E., 31 (12), 1735–1777 (2006). | MR | Zbl

[KaWa] Kajitani, K., Wakabayashi, S., Analytic smoothing effect for Schrödinger type equations with variable coefficients, in: Direct and Inverse Problems of Mathematical Physics (Newark, DE 1997), Int. Soc. Anal. Comput. 5, Kluwer Acad. Publ. (Dordracht, 2000), 185–219. | MR | Zbl

[KRY] Kapitanski, L., Rodnianski, I., Yajima, K., On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal. 9 (1997), 77–106. | MR | Zbl

[KaSa] Kapitanski, L., Safarov, Y., Dispersive smoothing for Schrödinger equations, Math. Res. Letters 3 (1996), 77–91. | MR | Zbl

[KaTa] Kato, K., Taniguchi, K., Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math 33 (1996), 863–880. | MR | Zbl

[KaYa] Kato, T., Yajima, K., Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), 481–496. | MR | Zbl

[KPV] Kenig, C., Ponce, G., Vega, L., Oscillatory integrals and regularity of dispersive equations, Ind. Univ. Math. J. 40 (1991), 33–69. | MR | Zbl

[Ma] Martinez, A., An Introduction to Semiclassical and Microlocal Analysis, UTX Series, Springer-Verlag New-York, 2002. | MR | Zbl

[MNS1] Martinez, A., Nakamura, S., Sordoni, V., Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math. 59 (2006), 1330–1351. | MR | Zbl

[MNS2] Martinez, A., Nakamura, S., Sordoni, V., Analytic wave front set for solutions to Schrödinger equations, Preprint 2007.

[Mec] Mechergui, C., Equivalence between the analytic quadratic scattering wave front set and analytic homogeneus wave front set, Preprint 2007.

[Mel] Melrose, R. B., Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992), Dekker, New York, 1994, pp. 85TH130. | MR | Zbl

[MRZ] Morimoto, Y., Robbiano, L., Zuily, C., Remark on the smoothing for the Schrödinger equation, Indiana University Mathematic Journal 49 (2000), 1563–1579. | MR | Zbl

[Na1] Nakamura, S., Propagation of the Homogeneous Wave Front Set for Schrödinger Equations, Duke Math. J. 126, 349-367 (2005). | MR | Zbl

[Na2] Nakamura, S., Wave front set for solutions to Schrödinger equations, Preprint 2004

[Na3] Nakamura, S.: Semiclassical singularity propagation property for Schrödinger equations, Preprint 2006 (http://www.arxiv.org/abs/math.AP/0605742), to appear in J. Math. Soc. Japan.

[Ro] Robert, S., Autour de l’Approximation Semi-Classique, Birkhäuser (1987) | Zbl

[RoZu1] Robbiano, L., Zuily, C., Microlocal analytic smoothing effect for Schrödinger equation, Duke Math. J. 100 (1999), 93–129. | MR | Zbl

[RoZu2] Robbiano, L., Zuily, C., Effet régularisant microlocal analytique pour l’équation de Schrödinger: le cas des données oscillantes, Comm. Partial Differential Equations 100 (2000) 1891–1906. | Zbl

[RoZu3] Robbiano, L., Zuily, C., Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation, Soc. Math. France, Astérisque 283 (2002), 1–128. | Numdam | MR | Zbl

[RoZu4] Robbiano, L., Zuily, C., Strichartz estimates for Schrödinger equations with variable coefficients, Mem. Soc. Math. France (N.S.) 101-102 (2005) | Numdam | MR | Zbl

[Sj] Sjöstrand, J., Singularités analytiques microlocales, Soc. Math. France, Astérisque 95 (1982), 1–166. | Numdam | MR | Zbl

[StTa] Staffilani, G., Tataru, D., Strichartz estimates for a Schrödinger operator with non smooth coefficients, Com. P. D. E. 27 (2002), 1337–1372 | MR | Zbl

[Wu] Wunsch, J., Propagation of singularities and growth for Schrödinger operators, Duke Math. J. 98 (1999), 137-186. | MR | Zbl

[Yaj1] Yajima, K., On smoothing property of Schrödinger propagators. Functional-Analytic Methods for Partial Differential Equations, Lecture Notes in Math., 1450 (1990), 20–35, Springer, Berlin. | MR | Zbl

[Yaj2] Yajima, K., Schrödinger evolution equations and associated smoothing effect, Rigorous Results in Quantum Dynamics, World Sci. Publishing, River Edge, NJ, 1991, 167–185. | MR

[Yam] Yamazaki, M., On the microlocal smoothing effect of dispersive partial differential equations, Algebraic Analysis Vol. II, 911–926, Academic Press, Boston, MA,1988. | MR | Zbl

[Ze] Zelditch, S., Reconstruction of singularities for solutions of Schrödinger equation, Comm. Math. Phys. 90 (1983), 1–26. | MR | Zbl