Échelles de temps pour l’évolution quantique à petite constante de Planck
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 4, 19 p.
@article{SEDP_2007-2008____A4_0,
     author = {Paul, Thierry},
     title = {\'Echelles de temps pour l'\'evolution quantique \`a petite constante de Planck},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     note = {talk:4},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A4_0}
}
Paul, Thierry. Échelles de temps pour l’évolution quantique à petite constante de Planck. Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 4, 19 p. http://www.numdam.org/item/SEDP_2007-2008____A4_0/

[1] D. Bambusi, S. Graffi et T. Paul, “Long tine semiclassical approximation of quantum flows : A proof of the Ehrenfest time", Asymp. Analysis, 21, | Zbl 0934.35142

[2] O. Babelon, B. Douçot et T. Paul, en préparation.

[3] I. Bloch « Exploring quantum matter with ultracold atoms in optical lattices », J. Phys. B 38, 629-643, 2005. 149-160, 999.

[4] A. Bouzouina et D.Robert, “Uniform semiclassical estimates for the propagation of quantum observables", Duke Math. J. 111, 223-252, 2002. | Zbl 1069.35061

[5] M. Combescure et D. Robert, “Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow", Asymptotic Anal. 14, 377-404 1997. | Zbl 0894.35026

[6] S.De Bièvre et D. Robert, “Semiclassical propagation on |log| time scales" Int. Math. Res. Not. 12, 667-696 (2003). | Zbl 1127.81328

[7] F. Golse, « Equation de Schrôdinger, dispersion et analyse numérique », Matapli 68, 59-67, 2002. | MR 2061580

[8] V. Guillemin and T. Paul « Some remarks about semiclassical trace invariants and quantum normal forms », preprint, 2008.

[9] S. Harochhe et J-M. Raimond, “Exploring the quantum : atoms, cavities and photons", Oxfrod University Press, 2007. | Zbl 1118.81001

[10] A. Iantchenko, J. Sjöstrand, and M. Zworski, “Birkhoff normal forms in semi-classical inverse problems". Math. Res. Lett. 9, 337-362, 2002. | Zbl pre01804060

[11] A. Martinez, “An Introduction to Semiclassical and Microlocal Analysis", Springer, 2001. | Zbl 0994.35003

[12] T. Paul, “Reconstruction and non-reconstruction of wave packets", preprint, 2008.

[13] T. Paul, “Reconstruction of wave-packets on an hyperbolic trajectory", preprint, 2008.

[14] T. Paul, “Non-linear coherent states and long time semclassical evolution", preprint, 2008.

[15] T. Paul, “Semiclassical analysis and sensitivity to initial conditions", Information and Computation, à paraître.

[16] D. Robert, “Revivals of wavw packets and Bohr-Sommerfeld quantization rules", Contemprary Math., 447, 219-235, 2007. | Zbl 1137.81331

[17] E. Schrödinger, “Quantizierung als Eigenwertproblem", Annalen der Physik (1926) 79 361-376 et 489-527, 80 437-490 et 81 109-139, 1926.

[18] B.Yurke and D.Soler, « Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion », Phys. Rev. Letters, 57, 13-16, 1986.