We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.
@article{SEDP_2008-2009____A16_0, author = {Jabin, Pierre-Emmanuel}, title = {Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:16}, pages = {1--15}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2008-2009}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2008-2009____A16_0/} }
TY - JOUR AU - Jabin, Pierre-Emmanuel TI - Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:16 PY - 2008-2009 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2008-2009____A16_0/ LA - en ID - SEDP_2008-2009____A16_0 ER -
%0 Journal Article %A Jabin, Pierre-Emmanuel %T Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:16 %D 2008-2009 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2008-2009____A16_0/ %G en %F SEDP_2008-2009____A16_0
Jabin, Pierre-Emmanuel. Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2008-2009), Talk no. 16, 15 p. http://archive.numdam.org/item/SEDP_2008-2009____A16_0/
[1] M. Bézard, Régularité précisée des moyennes dans les équations de transport. Bull. Soc. Math. France, 122 (1994), 29–76. | Numdam | MR | Zbl
[2] F. Bouchut, Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. (9), 81 (2002), 1135–1159. | MR | Zbl
[3] F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theories. Series in Appl. Math., no. 4, Elsevier (2000). | Zbl
[4] K.S. Cheng, A regularity Theorem for a Nonconvex Scalar Conservation Law. J. Differential Equations 61 (1986), no. 1, 79–127. | MR | Zbl
[5] C. Cheverry, Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 17(4) (2000), 413–472. | Numdam | MR | Zbl
[6] G. Crippa, F. Otto, and M. Westdickenberg, Regularizing effect of nonlinearity in multidimensional scalar conservation laws. To appear Transport Equations and Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana. | MR | Zbl
[7] C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Springer Verlag, GM 325 (1999). | MR | Zbl
[8] C. De Lellis, F. Otto, and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal., 170(2) (2003), 137–184. | MR | Zbl
[9] R. DiPerna, P.L. Lions and Y. Meyer, regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 271–287. | Numdam | MR | Zbl
[10] P. Gérard, F. Golse, Averaging regularity results for PDEs under transversality assumptions. Comm. Pure Appl. Math. 45(1) (1992), 1–26. | MR | Zbl
[11] F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 26 (1988), 110-125. | MR | Zbl
[12] F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. C.R. Acad. Sci. Paris Série I, 301 (1985), 341–344. | MR | Zbl
[13] D. Hoff, The sharp form of Oleĭnik’s entropy condition in several space dimensions. Trans. Amer. Math. Soc. 276 (1983), no. 2, 707–714. | MR | Zbl
[14] P.E. Jabin and B. Perthame, Regularity in kinetic formulations via averaging lemmas. ESAIM Control Optim. Calc. Var. 8 (2002), 761–774. | Numdam | MR | Zbl
[15] P.E. Jabin and L. Vega, A real space method for averaging lemmas, J. de Math. Pures Appl., 83 (2004), 1309–1351. | MR | Zbl
[16] S.N. Kruzkov, First order quasilinear equations in several independent variables. Math USSR Sb. 10 (1970), 217–243. | Zbl
[17] P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related questions. J. Amer. Math. Soc., 7 (1994), 169–191. | MR | Zbl
[18] O.A. Oleĭnik, On Cauchy’s problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.), 95 (1954), 451–454. | Zbl
[19] B. Perthame, Kinetic Formulations of conservation laws, Oxford series in mathematics and its applications, Oxford University Press (2002). | MR | Zbl
[20] D. Serre, Systèmes hyperboliques de lois de conservation. Diderot, Paris (1996). | Zbl
[21] E. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. | MR | Zbl
[22] E. Tadmor, The large-time behavior of the scalar, genuinely nonlinear Lax Friedrichs scheme. Math. Comp. 43 (1984), no. 168, 353–368. | MR | Zbl
[23] E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal. 28 (1991), no. 4, 891–906 | MR | Zbl
[24] A.I. Vol’pert, Spaces and quasilinear equations.(Russian) Mat. Sb. (N.S.) 73 (115) (1967) 255–302. [English transl.: Math. USSSR-Sb. 2 (1967), 225–267.] | Zbl