Limite de champ moyen de systèmes de particules
Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 31, 15 p.

On présente des résultats classiques et récents dans l’étude de la limite de champ moyen de systèmes de particules stochastiques en interaction. Ces derniers résultats visent à couvrir une plus grande variété de modèles et obtenir des estimations précises de la convergence et sont mises en lien avec le comportement en temps grand des systèmes considérés.

@article{SEDP_2009-2010____A31_0,
     author = {Bolley, Fran\c cois},
     title = {Limite de champ moyen de syst\`emes de particules},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2009-2010},
     note = {talk:31},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2009-2010____A31_0}
}
Bolley, François. Limite de champ moyen de systèmes de particules. Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 31, 15 p. http://www.numdam.org/item/SEDP_2009-2010____A31_0/

[1] M. Agueh, R. Illner et A. Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic Rel. Models 4, 1 (2011), 1–16. | MR 2765734 | Zbl 1208.92096

[2] S. Benachour, B. Roynette, D. Talay et P. Vallois. Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stoch. Proc. Appl. 75, 2 (1998), 173–201. | MR 1632193 | Zbl 0932.60063

[3] D. Benedetto, E. Caglioti, J. A. Carrillo et M. Pulvirenti. A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91, 5-6 (1998), 979–990. | MR 1637274 | Zbl 0921.60057

[4] F. Bolley. Quantitative concentration inequalities on sample path space for mean field interaction. Esaim Prob. Stat. 14 (2010), 192–209. | Numdam | MR 2741965 | Zbl 1208.82038

[5] F. Bolley, J. A. Cañizo et J. A. Carrillo. Stochastic Mean-Field Limit : Non-Lipschitz Forces and Swarming. A paraître dans Math. Mod. Meth. Appl. Sci. (2011). | MR 2860672 | Zbl pre06032261

[6] F. Bolley, J. A. Cañizo et J. A. Carrillo. Mean-field limit for the stochastic Vicsek model. Prépublication (2011). | MR 2855983

[7] F. Bolley, A. Guillin et F. Malrieu. Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. Math. Mod. Num. Anal 44, 5 (2010), 867–884. | Numdam | MR 2731396 | Zbl 1201.82029

[8] F. Bolley, A. Guillin et C. Villani. Quantitative concentration inequalities for empirical measures on non-compact spaces. Prob. Theor. Rel. Fields 137, 3-4 (2007), 541–593. | MR 2280433 | Zbl 1113.60093

[9] W. Braun et K. Hepp. The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles. Commun. Math. Phys. 56 (1977), 101–113. | MR 475547 | Zbl 1155.81383

[10] J. A. Cañizo, J. A. Carrillo et J. Rosado. A well-posedness theory in measures for some kinetic models of collective motion. Math. Mod. Meth. Appl. Sci. 21 (2011), 515–539. | MR 2782723 | Zbl 1218.35005

[11] E. A. Carlen, M. C. Carvalho, M. Loss, J. Le Roux et C. Villani. Entropy and chaos in the Kac model. Kinetic Rel. Models 3, 1 (2010), 85–122. | MR 2580955 | Zbl 1186.76675

[12] J. A. Carrillo, M. Fornasier, G. Toscani et F. Vecil. Particle, Kinetic, and Hydrodynamic Models of Swarming. In Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series : Modelling and Simulation in Science and Technology, Birkhauser, (2010), 297–336. | MR 2744704 | Zbl 1211.91213

[13] J. A. Carrillo, R. J. McCann et C. Villani. Kinetic equilibration rates for granular media and related equations : entropy dissipation and mass transportation estimates. Rev. Mat. Ibero. 19, 3 (2003), 971–1018. | MR 2053570 | Zbl 1073.35127

[14] P. Cattiaux, A. Guillin et F. Malrieu. Probabilistic approach for granular media equations in the non uniformly case. Prob. Theor. Rel. Fields 140, 1-2 (2008), 19–40. | MR 2357669 | Zbl 1169.35031

[15] F. Cucker et S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control 52 (2007), 852–862. | MR 2324245

[16] R. Dobrushin. Vlasov equations. Funct. Anal. Appl.13 (1979), 115–123. | MR 541637 | Zbl 0422.35068

[17] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi et L. Chayes. Self-propelled particles with soft-core interactions : patterns, stability, and collapse. Phys. Rev. Lett. 96, 2006.

[18] F. Golse The mean-field limit for the dynamics of large particle systems, Journées équations aux dérivées partielles, Forges-les-Eaux (2003), 1–47. | Numdam | MR 2050595 | Zbl 1211.82037

[19] F. Golse. The mean-field limit for a regularized Vlasov-Maxwell dynamics. Prépublication (2010).

[20] M. Hauray et P.-E. Jabin. N particles approximation of the Vlasov equations with singular potential. Arch. Rach. Mech. Anal. 183, 3 (2007), 489–524. | MR 2278413 | Zbl 1107.76066

[21] G. Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 9, 86 (2006), 68–79. | MR 2246357 | Zbl 1111.35045

[22] F. Malrieu. Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stoch. Proc. Appl. 95, 1 (2001), 109–132. | MR 1847094 | Zbl 1059.60084

[23] F. Malrieu. Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13, 2 (2003), 540–560. | MR 1970276 | Zbl 1031.60085

[24] H. P. McKean. Propagation of chaos for a class of non-linear parabolic equations. In Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967. | Zbl 0181.44401

[25] S. Méléard. Asymptotic behaviour of some interacting particle systems ; McKean-Vlasov and Boltzmann models. Lecture Notes in Math. 1627, Springer, Berlin, 1996. | MR 1431299 | Zbl 0864.60077

[26] H. Neunzert. An introduction to the nonlinear Boltzmann-Vlasov equation. Lecture Notes in Math. 1048. Springer, Berlin, 1984. | MR 740721 | Zbl 0575.76120

[27] A.-S. Sznitman. Topics in propagation of chaos. Lecture Notes in Math. 1464, Springer, Berlin, 1991. | MR 1108185 | Zbl 0732.60114

[28] D. Talay. Probabilistic numerical methods for partial differential equations : elements of analysis. Lecture Notes in Math. 1627, Springer, Berlin, 1996. | MR 1431302 | Zbl 0854.65116

[29] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen et O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, (1995), 1226–1229.

[30] C. Villani. Optimal transport, old and new. Grundlehren der math. Wiss. 338, Springer, Berlin, 2009. | MR 2459454 | Zbl 1156.53003

[31] C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini et D. Sumpter. Inherent noise can facilitate coherence in collective swarm motion. Proc. Nat. Acad. Sci. 106, 14 (2009), 5464–5469.