We consider the approximation of a mean field stochastic process by a large interacting particle system. We derive non-asymptotic large deviation bounds measuring the concentration of the empirical measure of the paths of the particles around the law of the process. The method is based on a coupling argument, strong integrability estimates on the paths in Hölder norm, and a general concentration result for the empirical measure of identically distributed independent paths.
Mots-clés : mean field limits, particle approximation, transportation inequalities
@article{PS_2010__14__192_0, author = {Bolley, Fran\c{c}ois}, title = {Quantitative concentration inequalities on sample path space for mean field interaction}, journal = {ESAIM: Probability and Statistics}, pages = {192--209}, publisher = {EDP-Sciences}, volume = {14}, year = {2010}, doi = {10.1051/ps:2008033}, mrnumber = {2741965}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2008033/} }
TY - JOUR AU - Bolley, François TI - Quantitative concentration inequalities on sample path space for mean field interaction JO - ESAIM: Probability and Statistics PY - 2010 SP - 192 EP - 209 VL - 14 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2008033/ DO - 10.1051/ps:2008033 LA - en ID - PS_2010__14__192_0 ER -
%0 Journal Article %A Bolley, François %T Quantitative concentration inequalities on sample path space for mean field interaction %J ESAIM: Probability and Statistics %D 2010 %P 192-209 %V 14 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps:2008033/ %R 10.1051/ps:2008033 %G en %F PS_2010__14__192_0
Bolley, François. Quantitative concentration inequalities on sample path space for mean field interaction. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 192-209. doi : 10.1051/ps:2008033. http://archive.numdam.org/articles/10.1051/ps:2008033/
[1] Nonlinear self-stabilizing processes. I: Existence, invariant probability, propagation of chaos. Stoch. Proc. Appl. 75 (1998) 173-201. | Zbl
, , and ,[2] A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91 (1998) 979-990. | Zbl
, , and ,[3] Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1-28. | Zbl
and ,[4] Quantitative concentration inequalities on sample path space for mean field interaction. Available online at www.ceremade.dauphine.fr/~bolley (2008). | Numdam
,[5] Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse Math. 6 (2005) 331-352. | Numdam | Zbl
and ,[6] Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Relat. Fields 137 (2007) 541-593. | Zbl
, and ,[7] Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Rat. Mech. Anal. 179 (2006) 217-263. | Zbl
, and ,[8] Probabilistic approach for granular media equations in the non uniformly case. Probab. Theory Relat. Fields 140 (2008) 19-40. | Zbl
, and ,[9] Large deviations techniques and applications. Springer, NewYork (1998). | Zbl
and ,[10] Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32 (2004) 2702-2732. | Zbl
, and ,[11] Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states). J. Math. Pures Appl. 9 (1999) 121-157. | Zbl
,[12] Régularité des trajectoires des fonctions aléatoires gaussiennes. Lect. Notes Math. 480. Springer, Berlin (1975). | Zbl
,[13] Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Thèse de doctorat de l'Université de Paris 10-Nanterre, 2005).
,[14] A general classification rule for probability measures. Ann. Statist. 23 (1995) 1393-1407. | Zbl
and ,[15] Approximation of functions. Holt, Rinehart and Winston, New York (1966). | Zbl
,[16] Logarithmic Sobolev inequalities for some nonlinear PDE's. Stoch. Proc. Appl. 95 (2001) 109-132. | Zbl
,[17] Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. Lect. Notes Math. 1627. Springer, Berlin (1996). | Zbl
,[18] Topics in propagation of chaos. Lect. Notes Math. 1464. Springer, Berlin (1991). | Zbl
,[19] Weak convergence and empirical processes. Springer, Berlin (1995). | Zbl
and ,[20] Topics in optimal transportation, volume 58 of Grad. Stud. Math. A.M.S., Providence (2003). | Zbl
,Cité par Sources :