@article{SPS_1974__8__134_0, author = {Knight, Frank B.}, title = {Existence of small oscillations at zeros of brownian motion}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {134--149}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {8}, year = {1974}, mrnumber = {373038}, zbl = {0305.60035}, language = {en}, url = {http://archive.numdam.org/item/SPS_1974__8__134_0/} }
TY - JOUR AU - Knight, Frank B. TI - Existence of small oscillations at zeros of brownian motion JO - Séminaire de probabilités de Strasbourg PY - 1974 SP - 134 EP - 149 VL - 8 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1974__8__134_0/ LA - en ID - SPS_1974__8__134_0 ER -
Knight, Frank B. Existence of small oscillations at zeros of brownian motion. Séminaire de probabilités de Strasbourg, Tome 8 (1974), pp. 134-149. http://archive.numdam.org/item/SPS_1974__8__134_0/
1. On the oscillation of the Brownian motion process, Israel Jour. Math. Vol. 1, #4 (1963), 212-214. | MR | Zbl
,2. Diffusion processes and their sample paths, Springer, Berlin, 1965. | Zbl
and ,3. Random walks and a sojourn density process of Brownian motion, Trans. Amer. Math. Soc. 109(1963), 56-86. | MR | Zbl
,4. Brownian local times and taboo processes, Trans. Amer. Math. Soc. 143(1969), 173-185. | MR | Zbl
,5. Théorie de l'addition des variables aleatoires, Gauthier-Villars, Paris, 1954. | JFM | MR | Zbl
,6. Processus stochastiques et mouvement Brownien, Gauthier-Villars, Paris, 1948. | MR | Zbl
,7. Renewal sets and random cutouts, Z. Wahrscheinlichkeitstheorie verw. Geb. 22(1972), 145-157. | MR | Zbl
,8. Stochastic integrals, Academic Press, New York, 1968. | Zbl
,9. How often on a Brownian path does the law of the iterated logarithm fail? To appear. | MR | Zbl
and ,10. Covering the line with random intervals, Z. Wahrscheinlichkeitstheorie verw. Geb. 23(1972), 163-170. | MR | Zbl
,11. A new approach to local times, J. Math. Mech. 17(1968), 1023-1054. | MR | Zbl
,12. Exact asymptotic estimates of Brownian path variation, Duke Jour. 39(1972), 219-241. | MR | Zbl
,