Arrêt par régions de {S 𝐧 /|𝐧|,𝐧 2 }
Séminaire de probabilités de Strasbourg, Tome 17 (1983), pp. 384-397.
@article{SPS_1983__17__384_0,
     author = {Ledoux, Michel},
     title = {Arr\^et par r\'egions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {384--397},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {17},
     year = {1983},
     mrnumber = {770428},
     zbl = {0513.60048},
     language = {fr},
     url = {http://archive.numdam.org/item/SPS_1983__17__384_0/}
}
TY  - JOUR
AU  - Ledoux, Michel
TI  - Arrêt par régions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $
JO  - Séminaire de probabilités de Strasbourg
PY  - 1983
SP  - 384
EP  - 397
VL  - 17
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1983__17__384_0/
LA  - fr
ID  - SPS_1983__17__384_0
ER  - 
%0 Journal Article
%A Ledoux, Michel
%T Arrêt par régions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $
%J Séminaire de probabilités de Strasbourg
%D 1983
%P 384-397
%V 17
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1983__17__384_0/
%G fr
%F SPS_1983__17__384_0
Ledoux, Michel. Arrêt par régions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $. Séminaire de probabilités de Strasbourg, Tome 17 (1983), pp. 384-397. http://archive.numdam.org/item/SPS_1983__17__384_0/

[1] R. Cairoli, J.-P. Gabriel. Arrêt de certaines suites multiples de variables aléatoires indépendantes. Séminaire de Probabilités XIII . Lecture Notes in Math. 721 , 174-198 (1979). | Numdam | MR | Zbl

[2] Y.S. Chow, H.E. Robbins, H. Teicher. Moments of randomly stopped sums. Ann. Math. Statist. 36 , 789-799 (1965). | MR | Zbl

[3] B. Davis. Stopping rules for Sn / n and the class LlogL . Z. Wahr. verw. Geb. 17 , 147-150 (1971). | MR | Zbl

[4] B. Davis. Moments of random walk having infinite variance and the existence of certain optimal stopping rules for Sn / n . Illinois J. Math. 17 , 75-81 (1973). | MR | Zbl

[5] A. Dvoretzky. Existence and properties of certain optimal stopping rules. Proc. 5th Berkeley Symposium, 441-452 (1967). | MR | Zbl

[6] A. Gut. Moments of the maximum of normed partial sums of random variables with multidimensional indices. Z. Wahr. verw. Geb. 46 , 205-220 (1979). | MR | Zbl

[7] U. Krengel, L. Sucheston. Stopping rules and tactics for processes indexed by a directed set. J. Multivariate Analysis 11 , 199-229 (1981). | MR | Zbl

[8] B.J. Mccabe, L.A. Shepp. On the supremum of Sn / n . Ann. Math Statist. 41 , 2166-2168 (1970). | MR | Zbl

[9] H.E. Robbins, E. Samuel. An extension of a lemma of Wald. J. Appl. Prob. 3 , 272-273 (1966). | MR | Zbl

[10] A. Wald. Sequential Analysis. Wiley, New-York (1947). | MR | Zbl