@article{SPS_1983__17__384_0, author = {Ledoux, Michel}, title = {Arr\^et par r\'egions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {384--397}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {17}, year = {1983}, mrnumber = {770428}, zbl = {0513.60048}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1983__17__384_0/} }
TY - JOUR AU - Ledoux, Michel TI - Arrêt par régions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $ JO - Séminaire de probabilités de Strasbourg PY - 1983 SP - 384 EP - 397 VL - 17 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1983__17__384_0/ LA - fr ID - SPS_1983__17__384_0 ER -
%0 Journal Article %A Ledoux, Michel %T Arrêt par régions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $ %J Séminaire de probabilités de Strasbourg %D 1983 %P 384-397 %V 17 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1983__17__384_0/ %G fr %F SPS_1983__17__384_0
Ledoux, Michel. Arrêt par régions de $\lbrace S_{\bf n} / |{\bf n}| , {\bf n} \in \mathbb {N}^2\rbrace $. Séminaire de probabilités de Strasbourg, Tome 17 (1983), pp. 384-397. http://archive.numdam.org/item/SPS_1983__17__384_0/
[1] Arrêt de certaines suites multiples de variables aléatoires indépendantes. Séminaire de Probabilités XIII . Lecture Notes in Math. 721 , 174-198 (1979). | Numdam | MR | Zbl
, .[2] Moments of randomly stopped sums. Ann. Math. Statist. 36 , 789-799 (1965). | MR | Zbl
, , .[3] Stopping rules for Sn / n and the class LlogL . Z. Wahr. verw. Geb. 17 , 147-150 (1971). | MR | Zbl
.[4] Moments of random walk having infinite variance and the existence of certain optimal stopping rules for Sn / n . Illinois J. Math. 17 , 75-81 (1973). | MR | Zbl
.[5] Existence and properties of certain optimal stopping rules. Proc. 5th Berkeley Symposium, 441-452 (1967). | MR | Zbl
.[6] Moments of the maximum of normed partial sums of random variables with multidimensional indices. Z. Wahr. verw. Geb. 46 , 205-220 (1979). | MR | Zbl
.[7] Stopping rules and tactics for processes indexed by a directed set. J. Multivariate Analysis 11 , 199-229 (1981). | MR | Zbl
, .[8] On the supremum of Sn / n . Ann. Math Statist. 41 , 2166-2168 (1970). | MR | Zbl
, .[9] An extension of a lemma of Wald. J. Appl. Prob. 3 , 272-273 (1966). | MR | Zbl
, .[10] Sequential Analysis. Wiley, New-York (1947). | MR | Zbl
.