Levels at which every brownian excursion is exceptional
Séminaire de probabilités de Strasbourg, Tome 18 (1984), pp. 1-28.
@article{SPS_1984__18__1_0,
     author = {Barlow, Martin T. and Perkins, Edwin A.},
     title = {Levels at which every brownian excursion is exceptional},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {1--28},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {18},
     year = {1984},
     mrnumber = {770945},
     zbl = {0555.60050},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1984__18__1_0/}
}
TY  - JOUR
AU  - Barlow, Martin T.
AU  - Perkins, Edwin A.
TI  - Levels at which every brownian excursion is exceptional
JO  - Séminaire de probabilités de Strasbourg
PY  - 1984
SP  - 1
EP  - 28
VL  - 18
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1984__18__1_0/
LA  - en
ID  - SPS_1984__18__1_0
ER  - 
%0 Journal Article
%A Barlow, Martin T.
%A Perkins, Edwin A.
%T Levels at which every brownian excursion is exceptional
%J Séminaire de probabilités de Strasbourg
%D 1984
%P 1-28
%V 18
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1984__18__1_0/
%G en
%F SPS_1984__18__1_0
Barlow, Martin T.; Perkins, Edwin A. Levels at which every brownian excursion is exceptional. Séminaire de probabilités de Strasbourg, Tome 18 (1984), pp. 1-28. http://archive.numdam.org/item/SPS_1984__18__1_0/

1. R.V. Chacon, Y. Le Jan, E. Perkins, S.J. Taylor. Generalized arc length for Brownian motion and Lévy processes. Z.f.W. 57, 197-211 (1981). | MR | Zbl

2. B. Davis. On Brownian slow points. Z.f.W. 64, 359-367 (1983). | MR | Zbl

3. B. Davis, E. Perkins. Brownian slow points: the critical cases (preprint). | MR

4. J. Dugundji. Topology. Boston, Allyn and Bacon, Inc., 1966. | MR | Zbl

5. J. Hawkes. A lower Lipschitz condition for the stable subordinator. Z.f.W. 17, 23-32 (1971). | MR | Zbl

6. J. Hawkes. On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z.f.W. 19, 90-102 (1971). | MR | Zbl

7. J. Hawkes. Hausdorff measure, entropy, and the independence of small sets. Proc. London Math. Soc. (3) 28, 700-724 (1974). | MR | Zbl

8. J. Hawkes, W.E. Pruitt. Uniform Dimension Results for Processes with Independent Increments. Z.f.W. 28, 277-288 (1974). | MR | Zbl

9. K. Itô, H.P. Mckean. Diffusion Processes and Their Sample Paths. Berlin-Heidelberg-New York, Springer, 1974. | MR | Zbl

10. J.-P. Kahane. Slow points of Gaussian processes. Conference on Harmonic Analysis in Honor of Antoni Zygmund, I, 67-83, Wadsworth, 1981. | MR

11. F.B. Knight. Essentials of Brownian Motion and Diffusion. Amer. Math. Soc. Surveys 18, 1981. | MR | Zbl

12. P. Lévy. Processus Stochastiques et Mouvement Brownien. Paris, Gauthier-Villars, 1948. | MR | Zbl

13. E. Perkins. A global intrinsic characterization of Brownian local time. Ann. Probability 9, 800-817 (1981). | MR | Zbl

14. E. Perkins. The exact Hausdorff measure of the level sets of Brownian motion. Z.f.W. 58, 373-388 (1981). | MR | Zbl

15. E. Perkins. On the Hausdorff dimension of the Brownian slow points. Z.f.W. 64, 369-399 (1983). | MR | Zbl

16. S. Orey, S.J. Taylor. How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. (3) 28, 174-192 (1974). | MR | Zbl

17. P. Greenwood, E. Perkins. A conditioned limit theorem for random walk and Brownian local time on square root boundaries, Ann. Probability 11, 227-261 (1983). | MR | Zbl

18. R.K. Getoor. The Brownian escape process. Ann. Probability 7, 864-867 (1974). | MR | Zbl

19. D. Williams. Path decompositions and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc. 28, 738-768 (1974). | MR | Zbl

20. M. Emery, E. Perkins. On the filtration of B + L . Z.f.W. 59, 383-390 (1982). | MR | Zbl