@article{SPS_1984__18__1_0, author = {Barlow, Martin T. and Perkins, Edwin A.}, title = {Levels at which every brownian excursion is exceptional}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {1--28}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {18}, year = {1984}, mrnumber = {770945}, zbl = {0555.60050}, language = {en}, url = {http://archive.numdam.org/item/SPS_1984__18__1_0/} }
TY - JOUR AU - Barlow, Martin T. AU - Perkins, Edwin A. TI - Levels at which every brownian excursion is exceptional JO - Séminaire de probabilités de Strasbourg PY - 1984 SP - 1 EP - 28 VL - 18 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1984__18__1_0/ LA - en ID - SPS_1984__18__1_0 ER -
%0 Journal Article %A Barlow, Martin T. %A Perkins, Edwin A. %T Levels at which every brownian excursion is exceptional %J Séminaire de probabilités de Strasbourg %D 1984 %P 1-28 %V 18 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1984__18__1_0/ %G en %F SPS_1984__18__1_0
Barlow, Martin T.; Perkins, Edwin A. Levels at which every brownian excursion is exceptional. Séminaire de probabilités de Strasbourg, Tome 18 (1984), pp. 1-28. http://archive.numdam.org/item/SPS_1984__18__1_0/
1. Generalized arc length for Brownian motion and Lévy processes. Z.f.W. 57, 197-211 (1981). | MR | Zbl
, , , .2. On Brownian slow points. Z.f.W. 64, 359-367 (1983). | MR | Zbl
.3. Brownian slow points: the critical cases (preprint). | MR
, .4. Topology. Boston, Allyn and Bacon, Inc., 1966. | MR | Zbl
.5. A lower Lipschitz condition for the stable subordinator. Z.f.W. 17, 23-32 (1971). | MR | Zbl
.6. On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z.f.W. 19, 90-102 (1971). | MR | Zbl
.7. Hausdorff measure, entropy, and the independence of small sets. Proc. London Math. Soc. (3) 28, 700-724 (1974). | MR | Zbl
.8. Uniform Dimension Results for Processes with Independent Increments. Z.f.W. 28, 277-288 (1974). | MR | Zbl
, .9. Diffusion Processes and Their Sample Paths. Berlin-Heidelberg-New York, Springer, 1974. | MR | Zbl
, .10. Slow points of Gaussian processes. Conference on Harmonic Analysis in Honor of Antoni Zygmund, I, 67-83, Wadsworth, 1981. | MR
.11. Essentials of Brownian Motion and Diffusion. Amer. Math. Soc. Surveys 18, 1981. | MR | Zbl
.12. Processus Stochastiques et Mouvement Brownien. Paris, Gauthier-Villars, 1948. | MR | Zbl
.13. A global intrinsic characterization of Brownian local time. Ann. Probability 9, 800-817 (1981). | MR | Zbl
.14. The exact Hausdorff measure of the level sets of Brownian motion. Z.f.W. 58, 373-388 (1981). | MR | Zbl
.15. On the Hausdorff dimension of the Brownian slow points. Z.f.W. 64, 369-399 (1983). | MR | Zbl
.16. How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. (3) 28, 174-192 (1974). | MR | Zbl
, .17. A conditioned limit theorem for random walk and Brownian local time on square root boundaries, Ann. Probability 11, 227-261 (1983). | MR | Zbl
, .18. The Brownian escape process. Ann. Probability 7, 864-867 (1974). | MR | Zbl
.19. Path decompositions and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc. 28, 738-768 (1974). | MR | Zbl
.20. On the filtration of B + L . Z.f.W. 59, 383-390 (1982). | MR | Zbl
, .