Levels at which every brownian excursion is exceptional
Séminaire de probabilités de Strasbourg, Volume 18  (1984), p. 1-28
@article{SPS_1984__18__1_0,
     author = {Barlow, Martin T. and Perkins, Edwin},
     title = {Levels at which every brownian excursion is exceptional},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {18},
     year = {1984},
     pages = {1-28},
     zbl = {0555.60050},
     mrnumber = {770945},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1984__18__1_0}
}
Barlow, Martin T.; Perkins, Edwin A. Levels at which every brownian excursion is exceptional. Séminaire de probabilités de Strasbourg, Volume 18 (1984) , pp. 1-28. http://www.numdam.org/item/SPS_1984__18__1_0/

1. R.V. Chacon, Y. Le Jan, E. Perkins, S.J. Taylor. Generalized arc length for Brownian motion and Lévy processes. Z.f.W. 57, 197-211 (1981). | MR 626815 | Zbl 0469.60037

2. B. Davis. On Brownian slow points. Z.f.W. 64, 359-367 (1983). | MR 716492 | Zbl 0506.60078

3. B. Davis, E. Perkins. Brownian slow points: the critical cases (preprint). | MR 799422

4. J. Dugundji. Topology. Boston, Allyn and Bacon, Inc., 1966. | MR 193606 | Zbl 0144.21501

5. J. Hawkes. A lower Lipschitz condition for the stable subordinator. Z.f.W. 17, 23-32 (1971). | MR 282413 | Zbl 0193.45002

6. J. Hawkes. On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z.f.W. 19, 90-102 (1971). | MR 292165 | Zbl 0203.49903

7. J. Hawkes. Hausdorff measure, entropy, and the independence of small sets. Proc. London Math. Soc. (3) 28, 700-724 (1974). | MR 352412 | Zbl 0315.28001

8. J. Hawkes, W.E. Pruitt. Uniform Dimension Results for Processes with Independent Increments. Z.f.W. 28, 277-288 (1974). | MR 362508 | Zbl 0268.60063

9. K. Itô, H.P. Mckean. Diffusion Processes and Their Sample Paths. Berlin-Heidelberg-New York, Springer, 1974. | MR 345224 | Zbl 0285.60063

10. J.-P. Kahane. Slow points of Gaussian processes. Conference on Harmonic Analysis in Honor of Antoni Zygmund, I, 67-83, Wadsworth, 1981. | MR 730059

11. F.B. Knight. Essentials of Brownian Motion and Diffusion. Amer. Math. Soc. Surveys 18, 1981. | MR 613983 | Zbl 0458.60002

12. P. Lévy. Processus Stochastiques et Mouvement Brownien. Paris, Gauthier-Villars, 1948. | MR 29120 | Zbl 0034.22603

13. E. Perkins. A global intrinsic characterization of Brownian local time. Ann. Probability 9, 800-817 (1981). | MR 628874 | Zbl 0469.60081

14. E. Perkins. The exact Hausdorff measure of the level sets of Brownian motion. Z.f.W. 58, 373-388 (1981). | MR 639146 | Zbl 0458.60076

15. E. Perkins. On the Hausdorff dimension of the Brownian slow points. Z.f.W. 64, 369-399 (1983). | MR 716493 | Zbl 0506.60079

16. S. Orey, S.J. Taylor. How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. (3) 28, 174-192 (1974). | MR 359031 | Zbl 0292.60128

17. P. Greenwood, E. Perkins. A conditioned limit theorem for random walk and Brownian local time on square root boundaries, Ann. Probability 11, 227-261 (1983). | MR 690126 | Zbl 0522.60030

18. R.K. Getoor. The Brownian escape process. Ann. Probability 7, 864-867 (1974). | MR 542136 | Zbl 0416.60086

19. D. Williams. Path decompositions and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc. 28, 738-768 (1974). | MR 350881 | Zbl 0326.60093

20. M. Emery, E. Perkins. On the filtration of B + L . Z.f.W. 59, 383-390 (1982). | MR 721634 | Zbl 0466.60073