@article{SPS_1985__19__496_0, author = {Chung, Kai Lai}, title = {The gauge and conditional gauge theorem}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {496--503}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {19}, year = {1985}, mrnumber = {889497}, zbl = {0561.60084}, language = {en}, url = {http://archive.numdam.org/item/SPS_1985__19__496_0/} }
Chung, Kai Lai. The gauge and conditional gauge theorem. Séminaire de probabilités de Strasbourg, Tome 19 (1985), pp. 496-503. http://archive.numdam.org/item/SPS_1985__19__496_0/
[1] Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), 209-273. | MR | Zbl
, :[2] On stopped Feynman-Kac functionals, Séminaire de Probabilités XIV, 1978/79, Lecture Notes in Mathematics No. 784, Springer-Verlag. | Numdam | MR | Zbl
:[3] Feynman-Kac functional and Schrödinger equation, Seminar on Stochastic Processes 1, 1-29, Birkhäuser 1981. | MR | Zbl
, :[4] Conditional gauges, Seminar on Stochastic Processes 3, 1983. | MR | Zbl
:[5] Feynman-Kac functionals and positive solutions of ½Δu+qu = 0, Z. Wahrsch. Verw. Gebiete 65 (1983) , 19-33. | MR | Zbl
:[6] Conditional gauge with unbounded potential, Z. Wahrsch. Verw. Gebiete 65 (1983), 13-18. | MR | Zbl
:[7] Uniform boundedness of conditional gauge and Schrödinger equations, Comm. Math. Phys 93 (1984), 19-31. | MR | Zbl
: