@article{SPS_1998__32__128_0, author = {Amghibech, S.}, title = {Criteria of regularity at the end of a tree}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {128--136}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {32}, year = {1998}, mrnumber = {1655148}, zbl = {0917.60070}, language = {en}, url = {http://archive.numdam.org/item/SPS_1998__32__128_0/} }
Amghibech, S. Criteria of regularity at the end of a tree. Séminaire de probabilités de Strasbourg, Tome 32 (1998), pp. 128-136. http://archive.numdam.org/item/SPS_1998__32__128_0/
[1] Random Walk on Tree and Capacity in the Interval. Ann. Inst. H. Poincaré sect B. 28, 4 (1992), 557-592. | Numdam | MR | Zbl
, AND[2] Martin capacity for Markov chains. Ann. Probability. 23, 3 (1995), 1332-1346. | MR | Zbl
, , AND .[3] Fonctions harmoniques sur un arbre. Symposia. Math. Acadi 3 (1972), 203-270. | MR | Zbl
[4] Fonctions of One Complex Variable II. Springer-Verlag, 1995. | MR | Zbl
[5] Classical Potential Theory. Springer-Verlag, 1984. | MR | Zbl
[6] The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality. Probab. Theory Relat. Fields 91, 3-4 (1992), 445-466. | MR | Zbl
, AND[7] Wiener's Test and Markov Chains. J. Math. Anal. Appl. 6 (1963), 58-66. | MR | Zbl
[8] Random Walk and Percolation on Trees. Ann. Probability. 18, 3 (1990), 931-958. | MR | Zbl
[9] Markov Chains. North Holland, 1975. | MR | Zbl
[10] Potential Theory on Infinite Networks. Springer-Verlag, 1994. | MR | Zbl
[11] Potential Theory in Modern Function Theory. Maruzen Co. LTD, Tokyo,1959. | MR | Zbl
[12] Behaviour at infinity and harmonic functions of random walks on graphs. Probability Mesures on Groups X. ed. H. HEYER Plenum Press, New York,1991. | MR | Zbl