Criteria of regularity at the end of a tree
Séminaire de probabilités de Strasbourg, Volume 32  (1998), p. 128-136
@article{SPS_1998__32__128_0,
     author = {Amghibech, S.},
     title = {Criteria of regularity at the end of a tree},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {32},
     year = {1998},
     pages = {128-136},
     zbl = {0917.60070},
     mrnumber = {1655148},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1998__32__128_0}
}
Amghibech, S. Criteria of regularity at the end of a tree. Séminaire de probabilités de Strasbourg, Volume 32 (1998) , pp. 128-136. http://www.numdam.org/item/SPS_1998__32__128_0/

[1] Benjamini, I., AND Peres, Y. Random Walk on Tree and Capacity in the Interval. Ann. Inst. H. Poincaré sect B. 28, 4 (1992), 557-592. | Numdam | MR 1193085 | Zbl 0767.60061

[2] Benjamini, I., R. Pemantle, AND Y. Peres. Martin capacity for Markov chains. Ann. Probability. 23, 3 (1995), 1332-1346. | MR 1349175 | Zbl 0840.60068

[3] Cartier, P. Fonctions harmoniques sur un arbre. Symposia. Math. Acadi 3 (1972), 203-270. | MR 353467 | Zbl 0283.31005

[4] Conway, J. Fonctions of One Complex Variable II. Springer-Verlag, 1995. | MR 1344449 | Zbl 0887.30003

[5] Doob, J.L. Classical Potential Theory. Springer-Verlag, 1984. | MR 731258 | Zbl 0549.31001

[6] Kaimanovich, V., AND Woess, W. The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality. Probab. Theory Relat. Fields 91, 3-4 (1992), 445-466. | MR 1151805 | Zbl 0739.60004

[7] Lamperti, J. Wiener's Test and Markov Chains. J. Math. Anal. Appl. 6 (1963), 58-66. | MR 143258 | Zbl 0238.60044

[8] Lyons, R. Random Walk and Percolation on Trees. Ann. Probability. 18, 3 (1990), 931-958. | MR 1062053 | Zbl 0714.60089

[9] Revuz, D. Markov Chains. North Holland, 1975. | MR 415773 | Zbl 0332.60045

[10] Soardi, P. Potential Theory on Infinite Networks. Springer-Verlag, 1994. | MR 1324344 | Zbl 0818.31001

[11] Tsuji, M. Potential Theory in Modern Function Theory. Maruzen Co. LTD, Tokyo,1959. | MR 114894 | Zbl 0087.28401

[12] Woess, W. Behaviour at infinity and harmonic functions of random walks on graphs. Probability Mesures on Groups X. ed. H. HEYER Plenum Press, New York,1991. | MR 1179003 | Zbl 0821.60015