@article{SPS_1998__32__231_0, author = {Doney, R.A.}, title = {Some calculations for perturbed brownian motion}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {231--236}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {32}, year = {1998}, mrnumber = {1655296}, zbl = {0911.60067}, language = {en}, url = {http://archive.numdam.org/item/SPS_1998__32__231_0/} }
TY - JOUR AU - Doney, R.A. TI - Some calculations for perturbed brownian motion JO - Séminaire de probabilités de Strasbourg PY - 1998 SP - 231 EP - 236 VL - 32 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1998__32__231_0/ LA - en ID - SPS_1998__32__231_0 ER -
Doney, R.A. Some calculations for perturbed brownian motion. Séminaire de probabilités de Strasbourg, Tome 32 (1998), pp. 231-236. http://archive.numdam.org/item/SPS_1998__32__231_0/
[1] Une solution simple au problème de Skorokhod. Sém. de Prob. XIII, Lecture notes in Mathematics, 721, 90-115, Springer, 1978. | Numdam | MR | Zbl
and .[2] Some extensions of the arc-sine law as (partial) consequences of the scaling property of Brownian motion. Prob. Th. and Rel. Fields, 100, 1-29, 1994. | MR | Zbl
, , and .[3] Beta variables as the time spent in [0, ∞) by certain perturbed Brownian motions. J.London Math. Soc.,(to appear,1997). | MR | Zbl
, , and .[4] Applications of a path decomposition for doubly perturbed Brownian motion. Preprint, 1997.
and .[5] Weak limits of perturbed random walks and the equation Yt = Bt + α sups≤tYs + β infs≤tYs. Ann. Prob. 24, 2007-2017, 1996. | Zbl
.[6] Perturbed Bessel processes. This volume. | Numdam | Zbl
, , and .[7] Sur les temps passé par le mouvement brownien au dessus d'un multiple de son supremum, et quelques extensions de la loi de l'arcsinus. Thèse de doctorat de l'université Paris 7, 1992.
.[8] Perturbed Brownian motions. Prob. Th. and Rel. Fields, 108, 357-383, 1997. | MR | Zbl
and .[9] Continuous Martingales and Brownian Motion. .Springer-Verlag , Berlin, 1991. | MR | Zbl
and .[10] Some remarks on perturbed Brownian motion. Sém. de Prob., Lecture notes in Mathematics, 1613, 37-42, Springer, 1995. | Numdam | MR | Zbl
.[11] Some aspects of Brownian motion, part I; some special functionals.Lectures in Mathematics, Birkhäuser, ETH Zürich, 1992. | MR | Zbl
.