Dynamics of stochastic approximation algorithms
Séminaire de probabilités de Strasbourg, Volume 33 (1999), pp. 1-68.
@article{SPS_1999__33__1_0,
     author = {Bena{\"\i}m, Michel},
     title = {Dynamics of stochastic approximation algorithms},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {1--68},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {33},
     year = {1999},
     mrnumber = {1767993},
     zbl = {0955.62085},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1999__33__1_0/}
}
TY  - JOUR
AU  - Benaïm, Michel
TI  - Dynamics of stochastic approximation algorithms
JO  - Séminaire de probabilités de Strasbourg
PY  - 1999
SP  - 1
EP  - 68
VL  - 33
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1999__33__1_0/
LA  - en
ID  - SPS_1999__33__1_0
ER  - 
%0 Journal Article
%A Benaïm, Michel
%T Dynamics of stochastic approximation algorithms
%J Séminaire de probabilités de Strasbourg
%D 1999
%P 1-68
%V 33
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1999__33__1_0/
%G en
%F SPS_1999__33__1_0
Benaïm, Michel. Dynamics of stochastic approximation algorithms. Séminaire de probabilités de Strasbourg, Volume 33 (1999), pp. 1-68. http://archive.numdam.org/item/SPS_1999__33__1_0/

Akin, E. (1993). The General Topology of Dynamical Systems. American Mathematical Society, Providence. | MR | Zbl

Arthur, B., Ermol'Ev, Y., and Kaniovskii, Y. (1983). A generalized urn problem and its applications. Cybernetics, 19:61-71. | Zbl

Arthur, B.M. (1988). Self-reinforcing mechanisms in economics. In W, A. P., Arrow, K. J., and Pines, D., editors,The Economy as an Evolving Complex System, SFI Studies in the Sciences of Complexity. Addison-Wesley. | MR

Benaïm, M. (1996). A dynamical systems approach to stochastic approximations. SIAM Journal on Control and Optimization, 34:141-176. | MR | Zbl

Benaïm, M. (1997). Vertex reinforced random walks and a conjecture of Pemantle. The Annals of Probability, 25:361-392. | MR | Zbl

Benaïm, M. and Hirsch, M.W. (1994). Learning processes, mixed equilibria and dynamical systems arising from repeated games. Submitted.

Benaïm, M. and Hirsch, M.W. (1995a). Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1(1):1-16. | MR | Zbl

Benaïm, M. and Hirsch, M.W. (1995b). Dynamics of morse-smale urn processes. Ergodic Theory and Dynamical Systems, 15:1005-1030. | MR | Zbl

Benaïm, M. and Hirsch, M.W. (1996). Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dynam. Differential Equations, 8:141-176. | MR | Zbl

Benaïm, M. and Schreiber, S.J. (1997). Weak asymptotic pseudotrajectories for semiflows: Ergodic properties. Preprint.

Benveniste, A., Métivier, M., and Priouret, P. (1990). Stochastic Approximation and Adaptive Algorithms. Springer-Verlag, Berlin and New York. | MR | Zbl

Bowen, R. (1975). Omega limit sets of Axiom A diffeomorphisms. J. Diff. Eq, 18:333-339. | MR | Zbl

Brandière, O. (1996). Autour des pièges des algorithmes stochastiques. Thèse de Doctorat, Université de Marne-la-Vallée.

Brandière., O. (1997). Some pathological traps for stochastic approximation. SIAM Journal on Control and Optimization. To Appear. | MR | Zbl

Brandière, O. and Duflo., M. (1996). Les algorithmes stochastique contournent ils les pièges. Annales de l'IHP, 32:395-427. | Numdam | MR | Zbl

Conley, C.C. (1978). Isolated invariant sets and the Morse index. CBMS Regional conference series in mathematics. American Mathematical Society, Providence. | MR | Zbl

Delyon, B. (1996), General convergence results on stochastic approximation. IEEE trans. on automatic control, 41:1245-1255. | MR | Zbl

Duflo, M. (1990). Méthodes Récursives Aléatoires. Masson. English Translation: Random Iterative Models, Springer Verlag 1997. | Zbl

Duflo, M. (1996). Algorithmes Stochastiques. Mathématiques et Applications. Springer-Verlag. | MR | Zbl

Duflo, M. (1997). Cibles atteignables avec une probabilité positive d'après M. BENAIM. Unpublished manuscript.

Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes, Characterization and Convergence. John Wiley and Sons, Inc. | MR | Zbl

Fort, J.C. and Pages, G. (1994). Résaux de neurones: des méthodes connexionnistes d'apprentissage. Matapli, 37:31-48.

Fort, J.C. and Pages, G. (1996). Convergence of stochastic algorithms: From Kushner-Clark theorem to the lyapounov functional method. Adv. Appl. Prob, 28:1072-1094. | MR | Zbl

Fort, J.C. and Pages, G. (1997). Stochastic algorithm with non constant step: a.s. weak convergence of empirical measures. Preprint.

Fudenberg, D. and Kreps, K. (1993). Learning mixed equilibria. Games and Econom. Behav., 5:320-367. | MR | Zbl

Fudenberg, F. and Levine, D. (1998). Theory of Learning in Games. MIT Press, Cambridge, MA. In Press. | MR | Zbl

Hartman, P. (1964). Ordinary Differential Equationq. Wiley, New York. | MR | Zbl

Hill, B.M., Lane, D., and Sudderth, W. (1980). A strong law for some generalized urn processes. Annals of Probability, 8:214-226. | MR | Zbl

Hirsch, M.W. (1976). Differential Topology. Springer-Verlag, Berlin, New York, Heidelberg. | MR | Zbl

Hirsch, M.W. (1994). Asymptotic phase, shadowing and reaction-diffusion systems. In Differential equations, dynamical systems and control science, volume 152 of Lectures notes in pure and applied mathematics, pages 87-99. Marcel Dekker, New-York. | MR | Zbl

Hirsch, M.W. and Pugh, C.C. (1988). Cohomology of chain recurrent sets. Ergodic Theory and Dynamical Systems, 8:73-80. | MR | Zbl

Kaniovski, Y. and Young, H. (1995). Learning dynamics in games with stochastic perturbations. Games and Econom. Behav., 11:330-363. | MR | Zbl

Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. Ann. Math. Statis, 23:462-466. | MR | Zbl

Kushner, H.J. and Clarck, C.C. (1978). Stochastic Approximation for Constrained and Unconstrained Systems. Springer-Verlag, Berlin and New York. | MR | Zbl

Kushner, H.J. and Yin, G.G. (1997). Stochastic Approximation Algorithms and Applications. Springer-Verlag, New York. | MR | Zbl

Ljung, L. (1977). Analysis of recursive stochastic algorithms. IEEE Trans. Automat. Control., AC-22:551-575. | MR | Zbl

Ljung, L. (1986). System Identification Theory for the User. Prentice Hall, Englewood Cliffs, NJ. | Zbl

Ljung, L. and Söderström, T. (1983). Theory and Practice of Recursive Identification. MIT Press, Cambridge, MA. | MR | Zbl

Mañé, R. (1987). Ergodic Theory and Differentiable Dynamics. Springer-Verlag, New York. | MR | Zbl

Métivier, M. and Priouret, P. (1987). Théorèmes de convergence presque sure pour une classe d'algorithmes stochastiques à pas décroissant. Probability Theory and Related Fields, 74:403-428. | MR | Zbl

Munkres, J.R. (1975). Topology a first course. Prentice Hall. | MR | Zbl

Nevelson, M.B. and Khasminskii, R.Z. (1976). Stochastic Approximation and Recursive Estimation. Translation of Math. Monographs. American Mathematical Society, Providence.

Pemantle, R. (1990). Nonconvergence to unstable points in urn models and stochastic approximations. Annals of Probability, 18:698-712. | MR | Zbl

Pemantle, R. (1992). Vertex reinforced random walk. Probability Theory and Related Fields, 92:117-136. | MR | Zbl

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statis, 22:400-407. | MR | Zbl

Robinson, C.. (1977). Stability theorems and hyperbolicity in dynamical systems. Rocky Journal of Mathematics, 7:425-434. | MR | Zbl

Robinson, C. (1995). Introduction to the Theory of Dynamical Systems. Studies in Advances Mathematics. CRC Press, Boca Raton. | MR

Schreiber, S.J. (1997). Expansion rates and Lyapunov exponents. Discrete and Conts. Dynam. Sys., 3:433-438. | MR | Zbl

Shub, M. (1987). Global Stability of Dynamical Systems. Springer-Verlag, Berlin, New York, Heidelberg. | MR | Zbl

Stroock, D.W. (1993). Probability Theory. An analytic view. Cambridge University Press. | MR | Zbl

White, H. (1992). Artificial Neural Networks: Approximation and Learning Theory. Blackwell, Cambridge, Massachussets. | MR