A bipolar theorem for L + 0 (Ω,,𝐏)
Séminaire de probabilités de Strasbourg, Tome 33 (1999), pp. 349-354.
@article{SPS_1999__33__349_0,
     author = {Brannath, Werner and Schachermayer, Walter},
     title = {A bipolar theorem for {L}${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {349--354},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {33},
     year = {1999},
     mrnumber = {1768009},
     zbl = {0957.46020},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1999__33__349_0/}
}
TY  - JOUR
AU  - Brannath, Werner
AU  - Schachermayer, Walter
TI  - A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$
JO  - Séminaire de probabilités de Strasbourg
PY  - 1999
SP  - 349
EP  - 354
VL  - 33
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1999__33__349_0/
LA  - en
ID  - SPS_1999__33__349_0
ER  - 
%0 Journal Article
%A Brannath, Werner
%A Schachermayer, Walter
%T A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$
%J Séminaire de probabilités de Strasbourg
%D 1999
%P 349-354
%V 33
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1999__33__349_0/
%G en
%F SPS_1999__33__349_0
Brannath, Werner; Schachermayer, Walter. A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$. Séminaire de probabilités de Strasbourg, Tome 33 (1999), pp. 349-354. http://archive.numdam.org/item/SPS_1999__33__349_0/

[B 97]. W. Brannath, No Arbitrage and Martingale Measures in Option Pricing, Dissertation. University of Vienna (1997).

[DS 94]. F. Delbaen, W. Schachermayer, A General Version of the Fundamental Theorem of Asset Pricing, Math. Annalen 300 (1994), 463 - 520. | EuDML | MR | Zbl

[HS 49]. Halmos. P.R., Savage, L.J. (1949), Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics, Annals of Math. Statistics 20, 225-241.. | MR | Zbl

[KS 97]. D. Kramkov, W. Schachermayer, A Condition on the Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets, Preprint (1997). | MR

[KPR 84]. N.J. Kalton, N.T. Peck, J.W. Roberts, An F-space Sampler, London Math. Soc. Lecture Notes 89 (1984). | MR | Zbl

[M 74]. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espace Lp, Astérisque 11 (1974). | Numdam | MR | Zbl

[Me 79]. P.A., Meyer, Caractérisation des semimartingales, d'après Dellacherie, Séminaire de Probabilités XIII, Lect. Notes Mathematics 721 (1979), 620 - 623. | EuDML | Numdam | MR | Zbl

[N 70]. E.M. Nikishin, Resonance theorems and superlinear operators, Uspekhi Mat. Nauk 25, Nr. 6 (1970), 129 - 191. | MR | Zbl

[S 94]. W. Schachermayer, Martingale measures for discrete time processes with infinite horizon, Math. Finance 4 (1994), 25 - 55. | MR | Zbl

[Sch 67]. Schaefer, H.H. (1966), Topological Vector Spaces, Springer Graduate Texts in Mathematics. | MR | Zbl

[Str 90]. Stricker, C., Arbitrage et lois de martingale, Ann. Inst. Henri. Pincaré Vol. 26, no. 3 (1990), 451-460. | Numdam | MR | Zbl

[Y 80]. J.A. Yan, Caractérisation d' une classe d'ensembles convexes de L1 ou H1, Séminaire de Probabilités XIV, Lect. Notes Mathematics 784 (1980), 220-222. | Numdam | MR | Zbl