@article{SPS_1999__33__349_0, author = {Brannath, Werner and Schachermayer, Walter}, title = {A bipolar theorem for {L}${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {349--354}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {33}, year = {1999}, mrnumber = {1768009}, zbl = {0957.46020}, language = {en}, url = {http://archive.numdam.org/item/SPS_1999__33__349_0/} }
TY - JOUR AU - Brannath, Werner AU - Schachermayer, Walter TI - A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$ JO - Séminaire de probabilités de Strasbourg PY - 1999 SP - 349 EP - 354 VL - 33 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1999__33__349_0/ LA - en ID - SPS_1999__33__349_0 ER -
%0 Journal Article %A Brannath, Werner %A Schachermayer, Walter %T A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$ %J Séminaire de probabilités de Strasbourg %D 1999 %P 349-354 %V 33 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1999__33__349_0/ %G en %F SPS_1999__33__349_0
Brannath, Werner; Schachermayer, Walter. A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$. Séminaire de probabilités de Strasbourg, Tome 33 (1999), pp. 349-354. http://archive.numdam.org/item/SPS_1999__33__349_0/
[B 97]. No Arbitrage and Martingale Measures in Option Pricing, Dissertation. University of Vienna (1997).
,[DS 94]. A General Version of the Fundamental Theorem of Asset Pricing, Math. Annalen 300 (1994), 463 - 520. | EuDML | MR | Zbl
, ,[HS 49]. Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics, Annals of Math. Statistics 20, 225-241.. | MR | Zbl
, (1949),[KS 97]. A Condition on the Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets, Preprint (1997). | MR
, ,[KPR 84]. An F-space Sampler, London Math. Soc. Lecture Notes 89 (1984). | MR | Zbl
, , ,[M 74]. Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espace Lp, Astérisque 11 (1974). | Numdam | MR | Zbl
,[Me 79]. Caractérisation des semimartingales, d'après Dellacherie, Séminaire de Probabilités XIII, Lect. Notes Mathematics 721 (1979), 620 - 623. | EuDML | Numdam | MR | Zbl
,[N 70]. Resonance theorems and superlinear operators, Uspekhi Mat. Nauk 25, Nr. 6 (1970), 129 - 191. | MR | Zbl
,[S 94]. Martingale measures for discrete time processes with infinite horizon, Math. Finance 4 (1994), 25 - 55. | MR | Zbl
,[Sch 67]. Topological Vector Spaces, Springer Graduate Texts in Mathematics. | MR | Zbl
(1966),[Str 90]. Arbitrage et lois de martingale, Ann. Inst. Henri. Pincaré Vol. 26, no. 3 (1990), 451-460. | Numdam | MR | Zbl
,[Y 80]. Caractérisation d' une classe d'ensembles convexes de L1 ou H1, Séminaire de Probabilités XIV, Lect. Notes Mathematics 784 (1980), 220-222. | Numdam | MR | Zbl
,