A discrete approach to the chaotic representation property
Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 123-138.
@article{SPS_2001__35__123_0,
     author = {\'Emery, Michel},
     title = {A discrete approach to the chaotic representation property},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {123--138},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {35},
     year = {2001},
     mrnumber = {1837280},
     zbl = {0982.60031},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_2001__35__123_0/}
}
TY  - JOUR
AU  - Émery, Michel
TI  - A discrete approach to the chaotic representation property
JO  - Séminaire de probabilités de Strasbourg
PY  - 2001
SP  - 123
EP  - 138
VL  - 35
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_2001__35__123_0/
LA  - en
ID  - SPS_2001__35__123_0
ER  - 
%0 Journal Article
%A Émery, Michel
%T A discrete approach to the chaotic representation property
%J Séminaire de probabilités de Strasbourg
%D 2001
%P 123-138
%V 35
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_2001__35__123_0/
%G en
%F SPS_2001__35__123_0
Émery, Michel. A discrete approach to the chaotic representation property. Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 123-138. http://archive.numdam.org/item/SPS_2001__35__123_0/

[1] M. Émery. Quelques cas de représentation chaotique. Séminaire de Probabilités XXV, Lecture Notes in Mathematics 1485, Springer 1991. | Numdam | MR | Zbl

[2]. M. Émery. On the chaotic representation property for martingales. Probability theory and Mathematical Statistics. Lectures presented at the semester held in St-Petersburg, Russia, March 2 - April 23, 1993. Gordon and Breach, 1996. | MR | Zbl

[3] D. Revuz & M. Yor. Continuous Martingales and Brownian Motion. Springer-Verlag, 1999. | Zbl

[4] G. Taviot. Martingales et équations de structure : étude géométrique. Thèse, Université de Strasbourg I, 1999. | MR | Zbl

[5] A.M. Vershik. The theory of decreasing sequences of measurable partitions. St. Petersburg Math. J. 6, 705-761, 1995. | MR | Zbl