On equivalent martingale measures with bounded densities
Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 139-148.
@article{SPS_2001__35__139_0,
     author = {Kabanov, Yuri and Stricker, Christophe},
     title = {On equivalent martingale measures with bounded densities},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {139--148},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {35},
     year = {2001},
     mrnumber = {1837281},
     zbl = {0980.60073},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_2001__35__139_0/}
}
TY  - JOUR
AU  - Kabanov, Yuri
AU  - Stricker, Christophe
TI  - On equivalent martingale measures with bounded densities
JO  - Séminaire de probabilités de Strasbourg
PY  - 2001
SP  - 139
EP  - 148
VL  - 35
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_2001__35__139_0/
LA  - en
ID  - SPS_2001__35__139_0
ER  - 
%0 Journal Article
%A Kabanov, Yuri
%A Stricker, Christophe
%T On equivalent martingale measures with bounded densities
%J Séminaire de probabilités de Strasbourg
%D 2001
%P 139-148
%V 35
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_2001__35__139_0/
%G en
%F SPS_2001__35__139_0
Kabanov, Yuri; Stricker, Christophe. On equivalent martingale measures with bounded densities. Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 139-148. http://archive.numdam.org/item/SPS_2001__35__139_0/

[1] Chou C.S. Caractérisation d'une classe de semimartingales. Séminaire de Probabilités XIII, Lect. Notes in Math., 721, Springer, Berlin-Heidelberg-New York, 1979, 250-252. | Numdam | MR | Zbl

[2] Delbaen F., Grandits P., Rheinländer Th., Samperi D., Schweizer M., Stricker C.. Exponential hedging and entropic penalties. Preprint of the University of Franche-Comté, n° 2000/06. | MR

[3] Delbaen F., Schachermayer W. The Fundamental Theorem of Asset Pricing for unbounded stochastic processes. Math. Annalen, 312 (1998), 215 - 250. | MR | Zbl

[4] Dalang R.C., Morton A., Willinger W. Equivalent martingale measures and no-arbitrage in stochastic securities market model. Stochastics and Stochastic Reports, 29 (1990), 185-201. | MR | Zbl

[5] Émery M.. Compensation de processus V.F. non localement intégrables. Séminaire de Probabilités XIV, Lect. Notes in Math., 784, Springer, Berlin-Heidelberg-New York, 1980, 250-252. | Numdam | MR | Zbl

[6] Föllmer H., Kabanov Yu.M. Optional decomposition and Lagrange multipliers. Finance and Stochastics, 2 (1998), 1, 69-81. | MR | Zbl

[7] Hirriart-Urruty J.B., Lemaréchal C., Convex Analysis and Minimization Algorithms, I. Springer, Berlin-Heidelberg-New York, 1996.

[8] Jacka S.D. A martingale representation result and an application to incomplete financial markets. Mathematical Finance, 2 (1992), 4, 239-250. | Zbl

[9] Jacod J., Shiryaev A.N. Limit Theorems for Stochastic Processes. Springer, Berlin-Heidelberg-New York, 1987. | MR | Zbl

[10] Kabanov Yu M. On the FTAP of Kreps-Delbaen-Schachermayer. Statistics and Control of Random Processes. The Liptser Festschrift. Proceedings of Steklov Mathematical Institute Seminar, World Scientific, 1997, 191-203. | MR | Zbl

[11] Kabanov Yu.M., Liptser R.Sh.,Shiryaev A.N., On the variation distance for probability measures defined on a filtered space. Probability Theory and Related Fields, 71 (1986), 19-35. | MR | Zbl

[12] Kramkov D.O. On a closure of the family of martingale measures and an optional decomposition of semimartingales. Probability Theory and Its Applications, 41 (1996), 788-791. | MR | Zbl