Bending invariants for hypersurfaces
Séminaire de théorie spectrale et géométrie, Tome 17 (1998-1999), pp. 105-109.
@article{TSG_1998-1999__17__105_0,
     author = {Souam, Rabah},
     title = {Bending invariants for hypersurfaces},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {105--109},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {17},
     year = {1998-1999},
     mrnumber = {1752700},
     zbl = {0978.53013},
     language = {en},
     url = {http://archive.numdam.org/item/TSG_1998-1999__17__105_0/}
}
TY  - JOUR
AU  - Souam, Rabah
TI  - Bending invariants for hypersurfaces
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1998-1999
SP  - 105
EP  - 109
VL  - 17
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_1998-1999__17__105_0/
LA  - en
ID  - TSG_1998-1999__17__105_0
ER  - 
%0 Journal Article
%A Souam, Rabah
%T Bending invariants for hypersurfaces
%J Séminaire de théorie spectrale et géométrie
%D 1998-1999
%P 105-109
%V 17
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_1998-1999__17__105_0/
%G en
%F TSG_1998-1999__17__105_0
Souam, Rabah. Bending invariants for hypersurfaces. Séminaire de théorie spectrale et géométrie, Tome 17 (1998-1999), pp. 105-109. http://archive.numdam.org/item/TSG_1998-1999__17__105_0/

[Al-Ri] F. Almgren and I. Rivin - Themean curvature integral is invariant under bending, Rivin, Igor (ed.) et al., The Epstein Birthday Schrift Geom. Topol. Monogr. 1 (electronic) ( 1988), 1-21. | MR | Zbl

[Co] R. Connelly - A counter example to the rigidity conjecture for polyhedra, Inst. Haut. Étud. Sci., Publ. Math. 47 ( 1977). 333-338. | Numdam | MR | Zbl

[CSW] R. Connelly, I. Sabitov and A. Walz - The Bellows conjecture, Beitr. Algebra Geom. 38 ( 1997), 1-10. | MR | Zbl

[Lo] D. Lovelock - Intrinsic expressions for curvatures of even order of hypersurfaces in a Euclidean space, Tensor (N.S.) 22 U97U. 274-276. | MR | Zbl

[Re] R. Reilly - Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom. 8 ( 1973), 465-477. | MR | Zbl

[Ri-Sch]. I. Rivin and J-M. Schlenker - The Schläfli formula and Einstein manifolds, Electron. Res. Announc. Am. Math. Soc. 5, No 3 ( 1999), 18-23. | MR | Zbl

[Ro] H. Rosenberg - Hypersurfaces of constant curvature in space forms, Buil. Sc. Math. 2e série 117 ( 1993). 211-239. | MR | Zbl

[Sab] I. Sabitov - Local theory of bendings of surfaces, in Geometry III,Y. Burago and V. Zalgaller, editors, volume 29 of Encyclopaedia of Mathematical Sciences, Springer, 1993. | MR | Zbl

[Sac] R. Sacksteder - The rigidity of hypersurfaces, J. Math. Mech. 11 ( 1962), 929-939. | MR | Zbl

[Sch-So] -M. Schlenker and R. Souam - Higher Schläfli formulas and applications, preprint no 99-06, Université de Paris-Sud, 1999.

[Spi] M. Spivak - A comprehensive introduction to differential geometry, volume V. Publish or Perish, Inc., 1970. | MR | Zbl