Comment choisir une connexion au hasard ?
Séminaire de théorie spectrale et géométrie, Tome 21 (2002-2003), pp. 61-73.
@article{TSG_2002-2003__21__61_0,
     author = {L\'evy, Thierry},
     title = {Comment choisir une connexion au hasard ?},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {61--73},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     year = {2002-2003},
     mrnumber = {2052825},
     zbl = {1120.81064},
     language = {fr},
     url = {http://archive.numdam.org/item/TSG_2002-2003__21__61_0/}
}
TY  - JOUR
AU  - Lévy, Thierry
TI  - Comment choisir une connexion au hasard ?
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2002-2003
SP  - 61
EP  - 73
VL  - 21
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_2002-2003__21__61_0/
LA  - fr
ID  - TSG_2002-2003__21__61_0
ER  - 
%0 Journal Article
%A Lévy, Thierry
%T Comment choisir une connexion au hasard ?
%J Séminaire de théorie spectrale et géométrie
%D 2002-2003
%P 61-73
%V 21
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_2002-2003__21__61_0/
%G fr
%F TSG_2002-2003__21__61_0
Lévy, Thierry. Comment choisir une connexion au hasard ?. Séminaire de théorie spectrale et géométrie, Tome 21 (2002-2003), pp. 61-73. http://archive.numdam.org/item/TSG_2002-2003__21__61_0/

[1] Sergio Albeverio, Raphael H∅Egh-Krohn, and Helge Holden. Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces. In Stochastic processes - mathematics and physics (Bielefeld, 1984), pages 1-24. Springer, Berlin, 1986. | MR | Zbl

[2] Bruce K. Driver. YM2: continuum expectations, lattice convergence, and lassos. Comm. Math. Phys., 123(4):575-616, 1989. | MR | Zbl

[3] Leonard Gross. A Poincaré lemma for connection forms. J. Funct.Anal., 63(1): 1-46, 1985. | MR | Zbl

[4] Thierry Lévy. Wilson loops in the light of spin networks, math-ph/0306059, 2003. | MR | Zbl

[5] Thierry Lévy. Yang-mills measure on compact surfaces. Mem. Amer. Math. Soc, To appear. | MR | Zbl

[6] A.A. Migdal. Recursion equations in gauge field theories. Sov. Phys. JETP, 42(3):413-418, 1975.

[7] Ambar Sengupta. Gauge invariant functions of connections. Proc. Amer. Math. Soc, 121(3):897-905, 1994. | MR | Zbl

[8] Ambar Sengupta. Gauge theory on compact-surfaces. Mem. Amer. Math. Soc, 126(6 00):viii+85, 1997, | MR | Zbl

[9] Edward Witten. On quantum gauge theories in two dimensions. Comm. Math. Phys., 141(1): 153-209, 1991. | MR | Zbl

[10] Edward Witten. Two-dimensional gauge theories revisited. J. Geom. Phys., 9(4):303-368, 1992. | MR | Zbl