On the conductor formula of Bloch
Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151.

In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.

@article{PMIHES_2004__100__5_0,
     author = {Kato, Kazuya and Saito, Takeshi},
     title = {On the conductor formula of {Bloch}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {5--151},
     publisher = {Springer},
     volume = {100},
     year = {2004},
     doi = {10.1007/s10240-004-0026-6},
     mrnumber = {2102698},
     zbl = {1099.14009},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-004-0026-6/}
}
TY  - JOUR
AU  - Kato, Kazuya
AU  - Saito, Takeshi
TI  - On the conductor formula of Bloch
JO  - Publications Mathématiques de l'IHÉS
PY  - 2004
SP  - 5
EP  - 151
VL  - 100
PB  - Springer
UR  - http://archive.numdam.org/articles/10.1007/s10240-004-0026-6/
DO  - 10.1007/s10240-004-0026-6
LA  - en
ID  - PMIHES_2004__100__5_0
ER  - 
%0 Journal Article
%A Kato, Kazuya
%A Saito, Takeshi
%T On the conductor formula of Bloch
%J Publications Mathématiques de l'IHÉS
%D 2004
%P 5-151
%V 100
%I Springer
%U http://archive.numdam.org/articles/10.1007/s10240-004-0026-6/
%R 10.1007/s10240-004-0026-6
%G en
%F PMIHES_2004__100__5_0
Kato, Kazuya; Saito, Takeshi. On the conductor formula of Bloch. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151. doi : 10.1007/s10240-004-0026-6. http://archive.numdam.org/articles/10.1007/s10240-004-0026-6/

1. A. Abbes, Cycles on arithmetic surfaces, Compos. Math., 122 (2000), no. 1, 23-111. | MR | Zbl

2. A. Abbes, The Whitney sum formula for localized Chern classes, to appear in J. Théor. Nombres Bordx.

3. A. Abbes and T. Saito, Ramification groups of local fields with imperfect residue fields II, Doc. Math., Extra Volume Kato (2003), 3-70. | MR | Zbl

4. K. Arai, Conductor formula of Bloch, in tame case (in Japanese), Master thesis at University of Tokyo, 2000.

5. A. Blanco, J. Majadas, and A. Rodicio, Projective exterior Koszul homology and decomposition of the Tor functor, Invent. Math., 123 (1996), 123-140. | MR | Zbl

6. S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985, 421-450, Proc. Symp. Pure Math. 46, Part 2, Am. Math. Soc., Providence, RI (1987). | MR | Zbl

7. T. Chinburg, G. Pappas, and M. Taylor, ε-constants and Arakelov Euler characteristics, Math. Res. Lett., 7 (2000), no. 4, 433-446. | Zbl

8. A. J. De Jong, Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., 83 (1996), 51-93. | Numdam | MR | Zbl

9. P. Deligne, Équations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer, Berlin-New York (1970). | MR | Zbl

10. P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, (SGA 7 II), Lect. Notes Math. 340, Springer, Berlin-New York (1973). | MR | Zbl

11. A. Dold and D. Puppe, Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201-312. | Numdam | MR | Zbl

12. K. Fujiwara and K. Kato, Logarithmic etale topology theory, preprint.

13. W. Fulton, Intersection theory, 2nd ed. Ergeb. Math. Grenzgeb., 3. Folge. 2, Springer, Berlin (1998). | MR | Zbl

14. W. Fulton and S. Lang, Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, Berlin-New York (1985). | MR | Zbl

15. A. Grothendieck with J. Dieudonné, Eléments de géométrie algèbrique IV, Publ. Math., Inst. Hautes Étud. Sci., 20, 24, 28, 32 (1964-1967). | Numdam | MR | Zbl

16. A. Grothendieck et. al., Théorie des topos et cohomologie étale des schemas, (SGA 4), tome 3, Lect. Notes Math. 305, Springer, Berlin-New York (1973). | MR | Zbl

17. A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, (SGA 6), Lect. Notes Math. 225, Springer, Berlin-New York (1971). | MR

18. R. Hartshorne, Residues and Duality, Lect. Notes Math. 20, Springer, Berlin-New York (1966). | MR | Zbl

19. L. Illusie, Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, Berlin-New York (1971). | MR | Zbl

20. L. Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic etale cohomology, Cohomologies p-adiques et applications arithmétiques, II. Astérisque, 279 (2002), 271-322. | Numdam | MR | Zbl

21. L. Illusie, Champs toriques et log lissité, preprint (2000).

22. B. Iversen, Critical points of an algebraic function, Invent. Math. 12 (1971), 210-224. | MR | Zbl

23. K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (J.-I. Igusa ed.), Johns Hopkins UP, Baltimore (1989), 191-224. | MR | Zbl

24. K. Kato, Class field theory, 𝒟-modules, and ramification on higher dimensional schemes, preprint, unpublished version. | Zbl

25. K. Kato, Toric singularities, Am. J. Math., 116 (1994), 1073-1099. | MR | Zbl

26. K. Kato, S. Saito, and T. Saito, Artin characters for algebraic surfaces, Am. J. Math., 110 (1988), no. 1, 49-75. | MR | Zbl

27. M. Nagata, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., 3 (1963), 89-102. | MR | Zbl

28. C. Nakayama, Logarithmic étale cohomology, Math. Ann., 308 (1997), 365-404. | MR | Zbl

29. C. Nakayama, Nearby cycles for log smooth families, Compos. Math., 112 (1998), 45-75. | MR | Zbl

30. T. Ochiai, l-independence of the trace of monodromy, Math. Ann., 315 (1999), no. 2, 321-340. | MR | Zbl

31. A. Ogg, Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1-21. | MR | Zbl

32. M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. Éc. Norm. Supér., 36 (2003), 747-791. | Numdam | MR | Zbl

33. F. Orgogozo, Conjecture de Bloch et nombres de Milnor, Ann. Inst. Fourier, 53 (2003), 1739-1754. | Numdam | MR | Zbl

34. D. Quillen, Notes on the homology of commutative rings, Mimeographed Notes, MIT (1968). | Zbl

35. D. Quillen, On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., XVII, New York, 1968, 65-87. Am. Math. Soc., Providence, R.I. | MR | Zbl

36. J.-P. Serre, Corps locaux, 3rd ed., Hermann, Paris (1968). | MR | Zbl

37. J.-P. Serre, Représentations linéaires des groupes finis, 3rd ed., Hermann, Paris (1978). | MR | Zbl

38. T. Saito, Conductor, discriminant, and the Noether formula for arithmetic surfaces, Duke Math. J., 57 (1988), no. 1, 151-173. | MR | Zbl

39. T. Saito, Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), no. 2, 555-578. | MR | Zbl

40. T. Saito, Parity in Bloch's conductor formula in even dimension, to appear in J. Théor. Nombres Bordx. | Numdam | Zbl

41. T. Saito, Weight spectral sequences and independence of ℓ, J. de l'Institut Math. de Jussieu, 2 (2003), 1-52. | Zbl

42. C. Weibel, An introduction to homological algebra, Cambr. Stud. Adv. Math., 38, Cambridge UP, Cambridge (1994). | MR | Zbl

Cité par Sources :