@article{ASENS_2003_4_36_2_173_0, author = {Arnaud, Marie-Claude}, title = {Approximation des ensembles $\omega $-limites des diff\'eomorphismes par des orbites p\'eriodiques}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {173--190}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 36}, number = {2}, year = {2003}, doi = {10.1016/S0012-9593(03)00006-5}, zbl = {1024.37011}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S0012-9593(03)00006-5/} }
TY - JOUR AU - Arnaud, Marie-Claude TI - Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 173 EP - 190 VL - 36 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0012-9593(03)00006-5/ DO - 10.1016/S0012-9593(03)00006-5 LA - fr ID - ASENS_2003_4_36_2_173_0 ER -
%0 Journal Article %A Arnaud, Marie-Claude %T Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques %J Annales scientifiques de l'École Normale Supérieure %D 2003 %P 173-190 %V 36 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0012-9593(03)00006-5/ %R 10.1016/S0012-9593(03)00006-5 %G fr %F ASENS_2003_4_36_2_173_0
Arnaud, Marie-Claude. Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 36 (2003) no. 2, pp. 173-190. doi : 10.1016/S0012-9593(03)00006-5. http://archive.numdam.org/articles/10.1016/S0012-9593(03)00006-5/
[1] Le “closing lemma” en topologie C1, Mem. Soc. Math. Fr, Nouv. Série 74 (1998). | Numdam | Zbl
,[2] Un lemme de fermeture d'orbites : le “orbit closing lemma”, C.R.A.S., Ser. I 323 (1996) 1175-1178. | Zbl
,[3] Création de connexions en topologie C1, Ergodic Theory Dynam. Systems 21 (2001) 1-43. | MR | Zbl
,[4] Arnaud M.-C., The generic symplectic C1-diffeomorphisms of 4-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely periodic point, Ergodic Theory Dynam. Systems, à paraître. | Zbl
[5] Création de points périodiques de tous types au voisinage des tores K.A.M, Bull. Soc. Math. France 123 (1995) 591-603. | Numdam | MR | Zbl
,[6] Bonatti C., Diaz L., Pujals E., A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, preprint. | MR
[7] Connexions hétéroclines et généricité d'une infinité de puits et de sources, Ann. Sci. Ecole Norm. Sup. 32 (1999) 135-150. | Numdam | MR | Zbl
, ,[8] Partially hyperbolic dynamical systems, Math. USSR Izvestija 8 (1974) 177-218. | Zbl
, ,[9] Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math. 145 (1997) 81-137. | Zbl
,[10] Hyperbolicity, stability and the creation of homoclinic points, Documenta Mathematica, Extra Vol. ICM II (1998) 789-796. | EuDML | MR | Zbl
,[11] Topologie, 1992. | MR | Zbl
, (Ed.),[12] An ergodic closing lemma, Ann. Math. 116 (1982) 503-540. | MR | Zbl
,[13] Morales C.A., Pacifico M.-J., Lyapunov stability of generic ω-limit sets, preprint.
[14] Diffeomorphisms with infinitely many sinks, Topology 12 (1974) 9-18. | MR | Zbl
,[15] Quasi-elliptic points in conservative dynamical systems, Amer. J. Math. 99 (1977) 1081-1087. | MR | Zbl
,[16] The C1 closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems 3 (1983) 261-314. | MR | Zbl
, ,[17] Stabilité globale des systèmes dynamiques, Astérisque 56 (1978). | Numdam | MR | Zbl
,[18] Homoclinic points in symplectic and volume preserving diffeomorphisms, Comm. Math. Phys. 117 (1996) 435-449. | MR | Zbl
,Cited by Sources: