@article{AIHPB_2003__39_5_877_0, author = {Betz, Volker and L\H{o}rinczi, J\'ozsef}, title = {Uniqueness of {Gibbs} measures relative to brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {877--889}, publisher = {Elsevier}, volume = {39}, number = {5}, year = {2003}, doi = {10.1016/S0246-0203(03)00021-9}, mrnumber = {1997216}, zbl = {1025.60043}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0246-0203(03)00021-9/} }
TY - JOUR AU - Betz, Volker AU - Lőrinczi, József TI - Uniqueness of Gibbs measures relative to brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 877 EP - 889 VL - 39 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0246-0203(03)00021-9/ DO - 10.1016/S0246-0203(03)00021-9 LA - en ID - AIHPB_2003__39_5_877_0 ER -
%0 Journal Article %A Betz, Volker %A Lőrinczi, József %T Uniqueness of Gibbs measures relative to brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 877-889 %V 39 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0246-0203(03)00021-9/ %R 10.1016/S0246-0203(03)00021-9 %G en %F AIHPB_2003__39_5_877_0
Betz, Volker; Lőrinczi, József. Uniqueness of Gibbs measures relative to brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 5, pp. 877-889. doi : 10.1016/S0246-0203(03)00021-9. http://archive.numdam.org/articles/10.1016/S0246-0203(03)00021-9/
[1] DLR Measures for one-dimensional harmonic systems, Z. Wahr. Geb. 41 (1978) 305-312. | MR | Zbl
, , ,[2] Existence of Gibbs measures relative to Brownian motion, Markov Proc. Related Fields 1 (2002) 1-1, To appear. | MR | Zbl
,[3] Ground state properties of the Nelson Hamiltonian - A Gibbs measure-based approach, Rev. Math. Phys. 14 (2002) 173-198. | Zbl
, , , , ,[4] Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys. 12 (2000) 181-255. | MR | Zbl
, , ,[5] Pointwise bounds for Schrödinger eigenstates, Comm. Math. Phys. 62 (1978) 97-106. | MR | Zbl
,[6] Oscillateurs anharmoniques, mesures quasi-invariantes sur C(R,R) et théorie quantique des champs en dimension 1, Astérisque (1975) 22-23. | Numdam | Zbl
, ,[7] On one-dimensional diffusions with time parameter set (−∞,∞), Ann. Probab. 5 (1977) 807-813. | Zbl
,[8] Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59 (1984) 335-395. | MR | Zbl
, ,[9] Gibbs Measures and Phase Transitions, de Gruyter, Berlin, 1988. | MR | Zbl
,[10] Y. Hariya, A new approach to construct Gibbs measures on C(R, Rd), Preprint, 2001.
[11] K. Iwata, Reversible measures of a P(φ)1 time evolution, Probabilistic Methods in Mathematical Physics, Proc. Taniguchi Symp., Katata-Kyoto, Academic Press, pp. 195-209. | Zbl
[12] Gibbs measures for Brownian paths under the effect of an external and a small pair potential, J. Stat. Phys. 105 (2001) 607-649. | MR | Zbl
, ,[13] The infrared behavior in Nelson's model of a quantum particle coupled to a massless scalar field, Ann. Henri Poincaré 3 (2002) 1-28. | MR | Zbl
, , ,[14] Infrared regular representation of the three dimensional massless Nelson model, Lett. Math. Phys. 59 (2002) 189-198. | MR | Zbl
, , ,[15] Gibbs measures relative to Brownian motion, Ann. Probab. 27 (1999) 1183-1207. | MR | Zbl
, ,[16] Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators, Academic Press, London, 1978. | MR | Zbl
, ,[17] Sur la mécanique statistique d'une particule brownienne sur le tore, in: Séminaire de Probabilités XXV, Lecture Notes in Math., 1485, Springer, 1991, pp. 291-310. | Numdam | MR | Zbl
, ,[18] Unicité de certaines mesures quasi-invariantes sur C(R), Ann. Scient. École Normale Sup. Serie 4 8 (1975) 319-338. | Numdam | MR | Zbl
,[19] Représentation intégrale de certaines mesures quasi-invariantes sur C(R) ; mesures extrémales et propriété de Markov, Ann. Inst. Fourier (Grenoble) 26 (2) (1976) 7-24. | Numdam | MR | Zbl
, ,[20] Functional Integration and Quantum Physics, Academic Press, New York, 1979. | MR | Zbl
,[21] Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982) 447-526. | MR | Zbl
,Cité par Sources :