Soit (M,J) une variété presque complexe. Une application u :(M,J)→[−∞,+∞[ semi-continue supérieurement est dite plurisousharmonique si u∘ϕ est sousharmonique, pour toute courbe pseudo-holomorphe ϕ :(Δ,J0)→(M,J). En utilisant des techniques de régularisation des courants et des développements de Taylor dans des coordonnées locales adaptées à la structure J, on démontre qu'une application u :(M,J)→[−∞,+∞[ semi-continue supérieurement et non identiquement égale à −∞ est plurisousharmonique si et seulement si la partie de type (1,1) de est (semi-)positive au sens des courants.
Let (M,J) be an almost complex manifold. An upper semi-continuous map u:(M,J)→[−∞,+∞[ is said to be plurisubharmonic if u∘ϕ is subharmonic for every pseudo-holomorphic curve: ϕ:(Δ,J0)→(M,J). By using regularization techniques for currents and Taylor series expansions in suitable coordinates with respect to the structure J, we prove that an upper semi-continuous map u:(M,J)→[−∞,+∞[ which is not identically equal to −∞ is plurisubharmonic if and only if the (1,1)-part of is (semi-)positive as a current.
Accepté le :
Publié le :
@article{CRMATH_2002__335_6_509_0, author = {Haggui, Fathi}, title = {Fonctions {PSH} sur une vari\'et\'e presque complexe}, journal = {Comptes Rendus. Math\'ematique}, pages = {509--514}, publisher = {Elsevier}, volume = {335}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02518-9}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02518-9/} }
TY - JOUR AU - Haggui, Fathi TI - Fonctions PSH sur une variété presque complexe JO - Comptes Rendus. Mathématique PY - 2002 SP - 509 EP - 514 VL - 335 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02518-9/ DO - 10.1016/S1631-073X(02)02518-9 LA - fr ID - CRMATH_2002__335_6_509_0 ER -
Haggui, Fathi. Fonctions PSH sur une variété presque complexe. Comptes Rendus. Mathématique, Tome 335 (2002) no. 6, pp. 509-514. doi : 10.1016/S1631-073X(02)02518-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02518-9/
[1] J.-P. Demailly, Analytic Geometry, http://www-fourier.ujf-grenoble.fr
[2] Regularization of closed positive currents of type (1,1) by the flow of a Chern connection (Skoda, H. et al., eds.), Contributions to Complex Analysis and Analytic Geometry. Based on a colloquium dedicated to Pierre Dolbeault, Paris, France, June 23–26, 1992, Aspects of Math. E, Vol. 26, Vieweg, Braunschweig, 1994, pp. 105-126
[3] Complex analytic coordinates in almost complex manifolds, Ann. of Math., Volume 65 (1957), pp. 391-404
[4] J-Holomorphic Curves and Quantum Cohomology, University Lecture Series, Vol. 6, American Mathematical Society, Providence, RI, 1994
Cité par Sources :