Soit (M,J) une variété presque complexe. Une application u :(M,J)→[−∞,+∞[ semi-continue supérieurement est dite plurisousharmonique si u∘ϕ est sousharmonique, pour toute courbe pseudo-holomorphe ϕ :(Δ,J0)→(M,J). En utilisant des techniques de régularisation des courants et des développements de Taylor dans des coordonnées locales adaptées à la structure J, on démontre qu'une application u :(M,J)→[−∞,+∞[ semi-continue supérieurement et non identiquement égale à −∞ est plurisousharmonique si et seulement si la partie de type (1,1) de
Let (M,J) be an almost complex manifold. An upper semi-continuous map u:(M,J)→[−∞,+∞[ is said to be plurisubharmonic if u∘ϕ is subharmonic for every pseudo-holomorphic curve: ϕ:(Δ,J0)→(M,J). By using regularization techniques for currents and Taylor series expansions in suitable coordinates with respect to the structure J, we prove that an upper semi-continuous map u:(M,J)→[−∞,+∞[ which is not identically equal to −∞ is plurisubharmonic if and only if the (1,1)-part of
Accepté le :
Publié le :
@article{CRMATH_2002__335_6_509_0, author = {Haggui, Fathi}, title = {Fonctions {PSH} sur une vari\'et\'e presque complexe}, journal = {Comptes Rendus. Math\'ematique}, pages = {509--514}, publisher = {Elsevier}, volume = {335}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02518-9}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02518-9/} }
TY - JOUR AU - Haggui, Fathi TI - Fonctions PSH sur une variété presque complexe JO - Comptes Rendus. Mathématique PY - 2002 SP - 509 EP - 514 VL - 335 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(02)02518-9/ DO - 10.1016/S1631-073X(02)02518-9 LA - fr ID - CRMATH_2002__335_6_509_0 ER -
Haggui, Fathi. Fonctions PSH sur une variété presque complexe. Comptes Rendus. Mathématique, Tome 335 (2002) no. 6, pp. 509-514. doi : 10.1016/S1631-073X(02)02518-9. https://www.numdam.org/articles/10.1016/S1631-073X(02)02518-9/
[1] J.-P. Demailly, Analytic Geometry, http://www-fourier.ujf-grenoble.fr
[2] Regularization of closed positive currents of type (1,1) by the flow of a Chern connection (Skoda, H. et al., eds.), Contributions to Complex Analysis and Analytic Geometry. Based on a colloquium dedicated to Pierre Dolbeault, Paris, France, June 23–26, 1992, Aspects of Math. E, Vol. 26, Vieweg, Braunschweig, 1994, pp. 105-126
[3] Complex analytic coordinates in almost complex manifolds, Ann. of Math., Volume 65 (1957), pp. 391-404
[4] J-Holomorphic Curves and Quantum Cohomology, University Lecture Series, Vol. 6, American Mathematical Society, Providence, RI, 1994
- Hyperbolicity of Hartogs domains in almost complex manifolds, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 4, p. 511 | DOI:10.1080/17476933.2016.1227974
- On the upper-semicontinuity of automorphism groups of model domains in almost complex manifolds, Journal of Mathematical Analysis and Applications, Volume 421 (2015) no. 1, p. 118 | DOI:10.1016/j.jmaa.2014.07.004
- Pseudoconvex regions of finite D’Angelo type in four dimensional almost complex manifolds, Mathematische Zeitschrift, Volume 264 (2010) no. 2, p. 423 | DOI:10.1007/s00209-008-0471-x
- Strongly pseudoconvex homogeneous domains in almost complex manifolds, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2008 (2008) no. 623 | DOI:10.1515/crelle.2008.074
- Proper pseudoholomorphic maps between strictly pseudoconvex regions, Michigan Mathematical Journal, Volume 56 (2008) no. 1 | DOI:10.1307/mmj/1213972405
- Fefferman?s mapping theorem on almost complex manifolds in complex dimension two, Mathematische Zeitschrift, Volume 250 (2005) no. 1, p. 59 | DOI:10.1007/s00209-004-0736-y
Cité par 6 documents. Sources : Crossref