On écrit un système symétrique hyperbolique satisfait par le tenseur de Riemann de l'espace temps et l'accélération dynamique d'un fluide parfait relativiste. On détermine l'énergie du type Bel–Robinson correspondante, et l'égalité intégrale qu'elle satisfait.
We write a first order symmetric hyperbolic system coupling the Riemann tensor with the dynamical acceleration of a prefect relativistic fluid. We determine the associated, coupled, Bel–Robinson type energy, and the integral equality that it satisfies.
Accepté le :
Publié le :
@article{CRMATH_2002__335_8_711_0, author = {Choquet-Bruhat, Yvonne and York, James W.}, title = {Bianchi{\textendash}Euler system for relativistic fluids and {Bel{\textendash}Robinson} type energy}, journal = {Comptes Rendus. Math\'ematique}, pages = {711--716}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02550-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/} }
TY - JOUR AU - Choquet-Bruhat, Yvonne AU - York, James W. TI - Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy JO - Comptes Rendus. Mathématique PY - 2002 SP - 711 EP - 716 VL - 335 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/ DO - 10.1016/S1631-073X(02)02550-5 LA - en ID - CRMATH_2002__335_8_711_0 ER -
%0 Journal Article %A Choquet-Bruhat, Yvonne %A York, James W. %T Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy %J Comptes Rendus. Mathématique %D 2002 %P 711-716 %V 335 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/ %R 10.1016/S1631-073X(02)02550-5 %G en %F CRMATH_2002__335_8_711_0
Choquet-Bruhat, Yvonne; York, James W. Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy. Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 711-716. doi : 10.1016/S1631-073X(02)02550-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/
[1] Relativistic Fluids and Magnetofluids, Cambridge University Press, 1982
[2] C. R. Acad. Sci. Paris, 246 (1958), pp. 3105-3107
[3] Comm. Math. Phys, 3 (1966), pp. 334-357
[4] Banach Center Publ, 41 (1997) no. 1, pp. 119-131
[5] Topol. Methods Nonlinear Anal (2001)
[6] Class. Quantum Grav, 13 (1996), pp. 1451-1459
[7] Phys. Rev. D, 57 (1998), pp. 2317-2322
[8] K.O. Friedrichs, Fluid and magnetofluids, Colloque CNRS, 1969
[9] Bull. Soc. Math. France, 86 (1958), pp. 155-175
[10] Hyperbolic Differential Equations, I.A.S, Princeton, 1953
[11] Ann. IHES, 10 (1964)
[12] J. Math. Phys, 33 (1992), pp. 1047-1053
[13] Ann. Inst. H. Poincaré, 34 (1981), pp. 65-84
Cité par Sources :