Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy
[Système de Bianchi–Euler pour un fluide relativiste, et énergie de type Bel–Robinson]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 711-716.

On écrit un système symétrique hyperbolique satisfait par le tenseur de Riemann de l'espace temps et l'accélération dynamique d'un fluide parfait relativiste. On détermine l'énergie du type Bel–Robinson correspondante, et l'égalité intégrale qu'elle satisfait.

We write a first order symmetric hyperbolic system coupling the Riemann tensor with the dynamical acceleration of a prefect relativistic fluid. We determine the associated, coupled, Bel–Robinson type energy, and the integral equality that it satisfies.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02550-5
Choquet-Bruhat, Yvonne 1 ; York, James W. 2

1 LPTL, Université Paris 6, 4, 75252, Paris, France
2 Physics Department, Cornell University, Ithaca, NY, 14853-6801, USA
@article{CRMATH_2002__335_8_711_0,
     author = {Choquet-Bruhat, Yvonne and York, James W.},
     title = {Bianchi{\textendash}Euler system for relativistic fluids and {Bel{\textendash}Robinson} type energy},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {711--716},
     publisher = {Elsevier},
     volume = {335},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02550-5},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/}
}
TY  - JOUR
AU  - Choquet-Bruhat, Yvonne
AU  - York, James W.
TI  - Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 711
EP  - 716
VL  - 335
IS  - 8
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/
DO  - 10.1016/S1631-073X(02)02550-5
LA  - en
ID  - CRMATH_2002__335_8_711_0
ER  - 
%0 Journal Article
%A Choquet-Bruhat, Yvonne
%A York, James W.
%T Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy
%J Comptes Rendus. Mathématique
%D 2002
%P 711-716
%V 335
%N 8
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/
%R 10.1016/S1631-073X(02)02550-5
%G en
%F CRMATH_2002__335_8_711_0
Choquet-Bruhat, Yvonne; York, James W. Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy. Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 711-716. doi : 10.1016/S1631-073X(02)02550-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02550-5/

[1] Anile, M. Relativistic Fluids and Magnetofluids, Cambridge University Press, 1982

[2] Bel, L. C. R. Acad. Sci. Paris, 246 (1958), pp. 3105-3107

[3] Choquet-Bruhat, Y. Comm. Math. Phys, 3 (1966), pp. 334-357

[4] Choquet-Bruhat, Y.; York, J. Banach Center Publ, 41 (1997) no. 1, pp. 119-131

[5] Choquet-Bruhat, Y.; York, J.W. Topol. Methods Nonlinear Anal (2001)

[6] Friedrich, H. Class. Quantum Grav, 13 (1996), pp. 1451-1459

[7] Friedrich, H. Phys. Rev. D, 57 (1998), pp. 2317-2322

[8] K.O. Friedrichs, Fluid and magnetofluids, Colloque CNRS, 1969

[9] Foures (Choquet)-Bruhat, Y. Bull. Soc. Math. France, 86 (1958), pp. 155-175

[10] Leray, J. Hyperbolic Differential Equations, I.A.S, Princeton, 1953

[11] Lichnerowicz, A. Ann. IHES, 10 (1964)

[12] Rendall, A. J. Math. Phys, 33 (1992), pp. 1047-1053

[13] Ruggeri, T.; Strumia, A. Ann. Inst. H. Poincaré, 34 (1981), pp. 65-84

Cité par Sources :