On construit un système complet orthonormal tel que ∑n=1∞anΘn diverge presque partout pour n'importe quel {an}n=1∞∉l2. Pour le système construit le résultat suivant est vrai : Toute série suivant le système {Θn}n=1∞ non triviale et qui converge en mesure vers zéro diverge presque partout.
A complete orthonormal system of functions defined on the closed interval [0,1] is constructed such that ∑n=1∞anΘn diverges almost everywhere for any {an}n=1∞∉l2. For the constructed system the following result is true: Any nontrivial series by the system {Θn}n=1∞ which converges in measure to zero diverges almost everywhere.
Accepté le :
Publié le :
@article{CRMATH_2003__337_2_85_0, author = {Kazarian, Kazaros}, title = {A complete orthonormal system of divergence}, journal = {Comptes Rendus. Math\'ematique}, pages = {85--88}, publisher = {Elsevier}, volume = {337}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00286-3}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00286-3/} }
TY - JOUR AU - Kazarian, Kazaros TI - A complete orthonormal system of divergence JO - Comptes Rendus. Mathématique PY - 2003 SP - 85 EP - 88 VL - 337 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00286-3/ DO - 10.1016/S1631-073X(03)00286-3 LA - en ID - CRMATH_2003__337_2_85_0 ER -
Kazarian, Kazaros. A complete orthonormal system of divergence. Comptes Rendus. Mathématique, Tome 337 (2003) no. 2, pp. 85-88. doi : 10.1016/S1631-073X(03)00286-3. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00286-3/
[1] Trigonometric Series, A Treatise on Trigonometric Series, Pergamon Press, New York, 1961 (in Russian); English transl.:, 1964
[2] Some Random Series of Functions, Cambridge Stud. Adv. Math., 5, Cambridge University Press, London, 1993
[3] A certain complete orthonormal system, Mat. Sb., Volume 99(141) (1976) no. 3, pp. 356-365 (in Russian); English transl.: Math. USSR-Sb., 28, 1976, pp. 315-324
[4] Orthogonal Series, Transl. Math. Monographs, 75, American Mathematical Society, Providence, RI, 1989
[5] A remark on the divergence of Fourier series, Izv. Akad. Nauk Armyan. SSR Ser. Mat., Volume 18 (1983) no. 2, pp. 116-123 (in Russian); English transl.: Soviet J. Contemporary Math. Anal., 18, 1983
[6] Theorems on representations of functions by series, Mat. Sb., Volume 191 (2000) no. 12, pp. 123-140 (in Russian); English transl.: Math. USSR-Sb., 191, 11–12, 2000, pp. 1873-1889
[7] Über Konvergenz von Reihen deren Glieder durch den Zufall bestimmt werden, Mat. Sb., Volume 32 (1925), pp. 668-677
[8] Type des espaces normés, C. R. Acad. Sci. Paris, Ser. A–B, Volume 276 (1973), pp. 1673-1676
[9] Representation of measurable functions by series, Uspekhi Mat. Nauk, Volume 15 (1960) no. 5(95), pp. 77-141 (English transl.: Russian Math. Surveys, 15, 1960)
[10] Solved and unsolved problems in the theory of trigonometric and orthogonal series, Uspekhi Mat. Nauk, Volume 19 (1964) no. 1(115), pp. 3-69 (in Russian); English transl.: Russian Math. Surveys, 19, 1964
Cité par Sources :