@article{AIHPB_2005__41_4_631_0, author = {Picard, Jean}, title = {Stochastic calculus and martingales on trees}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {631--683}, publisher = {Elsevier}, volume = {41}, number = {4}, year = {2005}, doi = {10.1016/j.anihpb.2004.03.002}, mrnumber = {2144228}, zbl = {1077.60030}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.002/} }
TY - JOUR AU - Picard, Jean TI - Stochastic calculus and martingales on trees JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 631 EP - 683 VL - 41 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.002/ DO - 10.1016/j.anihpb.2004.03.002 LA - en ID - AIHPB_2005__41_4_631_0 ER -
%0 Journal Article %A Picard, Jean %T Stochastic calculus and martingales on trees %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 631-683 %V 41 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.002/ %R 10.1016/j.anihpb.2004.03.002 %G en %F AIHPB_2005__41_4_631_0
Picard, Jean. Stochastic calculus and martingales on trees. Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 4, pp. 631-683. doi : 10.1016/j.anihpb.2004.03.002. http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.002/
[1] Poisson snake and fragmentation, Electron. J. Probab. 7 (2002) 1-15, electronic. | MR | Zbl
, ,[2] Barycentres convexes et approximations des martingales continues dans les variétés, in: Séminaire de Probabilités, XXIX, Lecture Notes in Math., vol. 1613, Springer, Berlin, 1995, pp. 70-85. | Numdam | MR | Zbl
,[3] Differentiable and analytic families of continuous martingales in manifolds with connection, Probab. Theory Related Fields 108 (1997) 219-257. | MR | Zbl
,[4] On Walsh's Brownian motions, in: Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 275-293. | Numdam | MR | Zbl
, , ,[5] Dirichlet Forms and Analysis on Wiener Space, Studies in Mathematics, vol. 14, de Gruyter, 1991. | MR | Zbl
, ,[6] On reflected Dirichlet spaces, Probab. Theory Related Fields 94 (2) (1992) 135-162. | MR | Zbl
,[7] Martingales in manifolds - Definition, examples and behaviour under maps, in: , (Eds.), Séminaire de Probabilités, XVI, Supplément: Géométrie différentielle stochastique, Lecture Notes in Math., vol. 921, Springer, Berlin, 1982, pp. 217-236. | Numdam | MR | Zbl
,[8] Probabilités et potentiel, Chapitres V à VIII, Hermann, 1980. | MR | Zbl
, ,[9] Harmonic Maps between Riemannian Polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, Cambridge, 2001. | MR | Zbl
, ,[10] Stochastic Calculus in Manifolds, Universitext, Springer, 1989. | MR | Zbl
,[11] Sur le barycentre d'une probabilité dans une variété, in: Séminaire de Probabilités, XXV, Lecture Notes in Math., vol. 1485, Springer, Berlin, 1991, pp. 220-233. | Numdam | MR | Zbl
, ,[12] Fonctions convexes et semimartingales dans une variété, in: Seminar on Probability, XVIII, Lecture Notes in Math., vol. 1059, Springer, Berlin, 1984, pp. 501-518. | Numdam | MR | Zbl
, ,[13] Snakes and spiders: Brownian motion on R-trees, Probab. Theory Related Fields 117 (3) (2000) 361-386. | MR | Zbl
,[14] Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter, Berlin, 1994. | MR | Zbl
, , ,[15] Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (2) (1994) 173-204. | MR | Zbl
,[16] Riemannian Geometry and Geometric Analysis, Universitext, Springer-Verlag, Berlin, 1995. | MR | Zbl
,[17] Generalized Dirichlet forms and harmonic maps, Calc. Var. Partial Differential Equations 5 (1) (1997) 1-19. | MR | Zbl
,[18] Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence, Proc. London Math. Soc. 61 (3) (1990) 371-406. | MR | Zbl
,[19] Probability, convexity and harmonic maps II: Smoothness via probabilistic gradient inequalities, J. Funct. Anal. 126 (1) (1994) 226-257. | MR | Zbl
,[20] Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (3-4) (1993) 561-659. | MR | Zbl
, ,[21] Brownian motion on the continuum tree, Probab. Theory Related Fields 101 (3) (1995) 421-433. | MR | Zbl
,[22] A class of path-valued Markov processes and its applications to superprocesses, Probab. Theory Related Fields 95 (1) (1993) 25-46. | MR | Zbl
,[23] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1999. | MR | Zbl
,[24] Géométrie stochastique sans larmes, in: , (Eds.), Séminaire de Probabilités, XV, Lecture Notes in Math., vol. 850, Springer, Berlin, 1981, pp. 44-102. | Numdam | MR | Zbl
,[25] Martingales on Riemannian manifolds with prescribed limit, J. Funct. Anal. 99 (2) (1991) 223-261. | MR | Zbl
,[26] Barycentres et martingales sur une variété, Ann. Inst. Henri Poincaré Probab. Stat. 30 (4) (1994) 647-702. | Numdam | MR | Zbl
,[27] Smoothness of harmonic maps for hypoelliptic diffusions, Ann. Probab. 28 (2) (2000) 643-666. | MR | Zbl
,[28] The manifold valued Dirichlet problem for symmetric diffusions, Potential Anal. 14 (2001) 53-72. | MR | Zbl
,[29] Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, vol. 293, Springer-Verlag, Berlin, 1991. | MR | Zbl
, ,[30] Semimartingales et valeur absolue, in: Séminaire de Probabilités, XIII, Lecture Notes in Math., vol. 721, Springer, Berlin, 1979, pp. 472-477. | Numdam | MR | Zbl
,[31] K.-T. Sturm, A semigroup approach to harmonic maps, preprint. | MR
[32] Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature, Ann. Probab. 30 (3) (2002) 1195-1222. | MR | Zbl
,[33] Triple points: from non-Brownian filtrations to harmonic measures, Geom. Funct. Anal. 7 (6) (1997) 1096-1142. | MR | Zbl
,[34] A diffusion with a discontinuous local time, Astérisque 52-53 (1978) 37-45.
,[35] Some Aspects of Brownian Motion. Part II, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1997. | MR | Zbl
,Cited by Sources: