Martingales in manifolds. Definition, examples and behaviour under maps
Séminaire de probabilités de Strasbourg, Tome S16 (1982), pp. 217-236.
@article{SPS_1982__S16__217_0,
     author = {Darling, R. W. R.},
     title = {Martingales in manifolds. {Definition,} examples and behaviour under maps},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {217--236},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {S16},
     year = {1982},
     mrnumber = {658727},
     zbl = {0482.58035},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1982__S16__217_0/}
}
TY  - JOUR
AU  - Darling, R. W. R.
TI  - Martingales in manifolds. Definition, examples and behaviour under maps
JO  - Séminaire de probabilités de Strasbourg
PY  - 1982
SP  - 217
EP  - 236
VL  - S16
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1982__S16__217_0/
LA  - en
ID  - SPS_1982__S16__217_0
ER  - 
%0 Journal Article
%A Darling, R. W. R.
%T Martingales in manifolds. Definition, examples and behaviour under maps
%J Séminaire de probabilités de Strasbourg
%D 1982
%P 217-236
%V S16
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1982__S16__217_0/
%G en
%F SPS_1982__S16__217_0
Darling, R. W. R. Martingales in manifolds. Definition, examples and behaviour under maps. Séminaire de probabilités de Strasbourg, Tome S16 (1982), pp. 217-236. http://archive.numdam.org/item/SPS_1982__S16__217_0/

[1] Bernard, A., Campbell, E.A., & Davie, A.M.. Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, 29.1 (1979), 207-228 | Numdam | Zbl

[2] Darling, R.W.R. Approximating Ito integrals of differential forms, and mean forward derivatives. (1981) To appear. | MR

[3] Darling, R.W.R. A Girsanov theorem for diffusions on a manifold (1981) To appear.

[4] Eells, J. & Lemaire, L. A report on harmonic maps. Bull. London Math. Soc. 10 (1978), pp. 1-68. | Zbl

[5] Eliasson, H.I. Geometry of manifolds of maps. J.Differential Geometry I (1967), 169-194 | MR | Zbl

[6] Fuglede, B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28.2 (1978), 107-144 | Numdam | MR | Zbl

[7] Greene, R.E. & Wu H., Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier 25 (1975) 215-235 | Numdam | Zbl

[8] Ishihara, Toru A mapping of Riemannian manifolds which preserves harmonic functions. J.Math. Kyoto Univ 19-2 (1979) 215-229 | MR | Zbl

[9] Kendall, W.S. Brownian motion and a generalized little Picard theorem. To appear 1982. | MR | Zbl

[10] Kobayashi, S., & Nomizu, K. Foundation of differential geometry, Vols I and II, Interscience, New York (1963, 1969)

[11] Meyer, P.A. Géometrie stochastique sans larmes. Sem. de Probabilités XV, 1979/1980, Springer LNM 850, pp. 44-102. | Numdam | MR | Zbl

[12] Meyer, P.A. A differential geometric formalism for the Ito calculus. Springer LNM 851 (1981) 256-270 | MR | Zbl

[13] Schwartz, L. Semi-martingales sur des variétés, et martingales conformes. (1980) Springer LNM 780. | MR | Zbl