@article{AIHPB_2005__41_5_817_0, author = {Delmas, Jean-Fran\c{c}ois and Vogt, Pascal}, title = {Non-linear {Neumann's} condition for the heat equation : a probabilistic representation using catalytic super-brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {817--849}, publisher = {Elsevier}, volume = {41}, number = {5}, year = {2005}, doi = {10.1016/j.anihpb.2004.05.007}, mrnumber = {2165252}, zbl = {1077.60038}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2004.05.007/} }
TY - JOUR AU - Delmas, Jean-François AU - Vogt, Pascal TI - Non-linear Neumann's condition for the heat equation : a probabilistic representation using catalytic super-brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 817 EP - 849 VL - 41 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2004.05.007/ DO - 10.1016/j.anihpb.2004.05.007 LA - en ID - AIHPB_2005__41_5_817_0 ER -
%0 Journal Article %A Delmas, Jean-François %A Vogt, Pascal %T Non-linear Neumann's condition for the heat equation : a probabilistic representation using catalytic super-brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 817-849 %V 41 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2004.05.007/ %R 10.1016/j.anihpb.2004.05.007 %G en %F AIHPB_2005__41_5_817_0
Delmas, Jean-François; Vogt, Pascal. Non-linear Neumann's condition for the heat equation : a probabilistic representation using catalytic super-brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 5, pp. 817-849. doi : 10.1016/j.anihpb.2004.05.007. http://archive.numdam.org/articles/10.1016/j.anihpb.2004.05.007/
[1] Reflecting Brownian snake and a Neumann-Dirichlet problem, Stochastic Process. Appl. 89 (2000) 239-260. | MR | Zbl
,[2] Solutions of with Neumann’s condition using the Brownian snake, Probab. Theory Related Fields 128 (4) (2004) 475-516. | Zbl
, ,[3] Probabilistic Techniques in Analysis, Springer, New York, 1995. | MR | Zbl
,[4] Markov Processes and Potential Theory, Academic Press, New York, 1968. | MR | Zbl
, ,[5] Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur , cas continu, in: Astérisque, vol. 52-53, 1978, pp. 117-144.
, ,[6] Super-mouvement brownien avec catalyse, Stochastics Stochastics Rep. 58 (3-4) (1996) 303-347. | MR | Zbl
,[7] Random trees, Lévy processes and spatial branching processes, Astérisque 281 (2002). | Numdam | MR | Zbl
, ,[8] Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc. Colloq. Publ., vol. 50, American Mathematical Society, 2002. | MR | Zbl
,[9] P. Hsu, Reflecting Brownian motion, boundary local time and Neumann problem, PhD thesis, Stanford University, 1984.
[10] A review on spatial catalytic branching, in: , (Eds.), Stochastic Models, A Conference in Honor of Don Dawson, Conference Proceedings, vol. 26, Canadian Mathematical Society, Providence, 2000, pp. 245-264. | MR | Zbl
,[11] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math., ETH Zürich, Birkhäuser, 1999. | MR | Zbl
,[12] Exit systems, Ann. Probab. 3 (1975) 399-411. | MR | Zbl
,[13] A construction of catalytic super-Brownian motion via collision local time, Stochastic Process. Appl. 115 (1) (2005) 77-90. | MR | Zbl
, ,[14] Brownian Motion and Classical Potential Theory, Academic Press, 1978. | MR | Zbl
, ,[15] Local times on the boundary for multi-dimensional reflecting diffusion, Proc. Japan Acad. 38 (1962) 699-702. | MR | Zbl
, ,[16] Multi-dimensional diffusion and the Markov process on the boundary, J. Math. Kyoto Univ. 3 (4) (1965) 529-605. | MR | Zbl
, ,Cited by Sources: