@article{AIHPC_2009__26_6_2539_0, author = {Mccann, Robert J. and Puel, Marjolaine}, title = {Constructing a {Relativistic} {Heat} {Flow} by {Transport} {Time} {Steps}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2539--2580}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.06.006}, mrnumber = {2569908}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.006/} }
TY - JOUR AU - Mccann, Robert J. AU - Puel, Marjolaine TI - Constructing a Relativistic Heat Flow by Transport Time Steps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2539 EP - 2580 VL - 26 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.006/ DO - 10.1016/j.anihpc.2009.06.006 LA - en ID - AIHPC_2009__26_6_2539_0 ER -
%0 Journal Article %A Mccann, Robert J. %A Puel, Marjolaine %T Constructing a Relativistic Heat Flow by Transport Time Steps %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2539-2580 %V 26 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.006/ %R 10.1016/j.anihpc.2009.06.006 %G en %F AIHPC_2009__26_6_2539_0
Mccann, Robert J.; Puel, Marjolaine. Constructing a Relativistic Heat Flow by Transport Time Steps. Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 6, pp. 2539-2580. doi : 10.1016/j.anihpc.2009.06.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.006/
[1] Existence of Solutions to Degenerate Parabolic Equations Via the Monge-Kantorovich Theory, Adv. Differential Equations 10 (3) (2005) 309-360. | MR | Zbl
,[2] Luigi Ambrosio, Steepest descent flows and applications to spaces of probability measures, Lectures Notes, Santander, July 2004. | Zbl
[3] Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, Lectures Math. ETH Zurich, Birkhäuser Verlag, Basel, 2005. | MR | Zbl
, , ,[4] Luigi Ambrosio, Aldo Pratelli, Existence and Stability Results in the Theory of Optimal Transportation, Lecture Notes in Math. | Zbl
[5] Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., vol. 25, Oxford University Press, Oxford, 2004. | MR | Zbl
, ,[6] Pairing Between Measures and Bounded Functions and Compensated Compactness, Ann. Mat. Pura Appl. (4) 135 (1983) 293-318. | MR | Zbl
,[7] Existence and Uniqueness of Solution for a Parabolic Quasilinear Problem for Linear Growth Functionals With Data, Math. Ann. 322 (2002) 139-206. | MR | Zbl
, , ,[8] Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progr. Math., vol. 223, Birkhäuser Verlag, 2004. | MR | Zbl
, , ,[9] A Strongly Degenerate Quasilinear Equation: the Elliptic Case, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (3) (2004) 555-587. | Numdam | MR | Zbl
, , ,[10] A Strong Degenerate Quasilinear Equation: the Parabolic Case, Arch. Ration. Mech. Anal. (2005). | MR | Zbl
, , ,[11] A Strongly Degenerate Quasilinear Elliptic Equation, Nonlinear Anal. 61 (2005) 637-669.
, , ,[12] The Cauchy Problem for a Strong Degenerate Quasilinear Equation, J. Eur. Math. Soc. (JEMS) 7 (2005) 361-393. | MR | Zbl
, , ,[13] Fuensanta Andreu, Vicent Caselles, José M. Mazón, Salvador Moll, The speed of propagation of the support of solutions of a tempered diffusion equation, preprint.
[14] Extended Monge-Kantorovich Theory, in: Optimal Transportation and Applications, Martina Franca, 2001, Lecture Notes in Math., vol. 1813, Springer, Berlin, 2003, pp. 91-121. | MR | Zbl
,[15] Analyse Fonctionnelle Et Ses Applications, Masson, 1983. | MR | Zbl
,[16] Opérateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert, North-Holland Math. Stud., vol. 5, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam, London/New York, 1973, (in French). | MR | Zbl
,[17] Boundary Regularity of Maps With Convex Potentials. II, Ann. of Math. (2) 144 (3) (1996) 453-496. | MR | Zbl
,[18] Wasserstein Metric and Large-Time Asymptotics of Nonlinear Diffusion Equations, in: New Trends in Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, pp. 234-244, (in honor of the Salvatore Rionero 70th birthday). | MR | Zbl
, ,[19] Convergence of the “relativistic” Heat Equation to the Heat Equation as , Publ. Mat. 51 (1) (2007) 121-142. | MR | Zbl
,[20] Formation of Discontinuities in Flux-Saturated Degenerate Parabolic Equations, Nonlinearity 16 (2003) 1875-1898. | MR | Zbl
, , ,[21] Non-Smooth Differential Properties of Optimal Transport, in: Recent Advances in the Theory and Applications of Mass Transport, Contemp. Math., vol. 353, Amer. Math. Soc., Providence, RI, 2004, pp. 61-71. | MR | Zbl
,[22] Integral Representation on of Γ-Limits of Variational Integrals, Manuscripta Math. 30 (1980) 387-416. | MR | Zbl
,[23] On -Lower Semicontinuity in BV, J. Convex Anal. 12 (1) (2005) 173-185. | MR | Zbl
, , ,[24] Linear Operators, Interscience Publishers, New York, 1958. | MR | Zbl
, ,[25] Weak Convergence Methods for Nonlinear Partial Differential Equations, published for the Conference Board of the Mathematical Sciences, Washington, DC, CBMS Reg. Conf. Ser. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1990. | MR | Zbl
,[26] Differential Equation Methods for the Monge Kantorovich Mass Transfer, Mem. Amer. Math. Soc. 653 (1999). | MR | Zbl
, ,[27] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, 1992. | MR | Zbl
, ,[28] Optimal Maps in Monge's Mass Transport Problem, C. R. Acad. Sci. Paris Sér. I Math. 321 (12) (1995) 1653-1658. | MR | Zbl
, ,[29] The Geometry of Optimal Transportation, Acta Math. 177 (2) (1996) 113-161. | MR | Zbl
, ,[30] The Variational Formulation of the Fokker-Planck Equation, SIAM J. Math. Anal. 29 (1) (1998) 1-17. | MR | Zbl
, , ,[31] Dual Spaces of Stresses and Strains, With Applications to Hencky Plasticity, Appl. Math. Optim. 10 (1) (1983) 1-35. | MR | Zbl
, ,[32] Quelques Methodes De Résolution Des Problèmes Aux Limites Non Linéaires, Dunod, 1969. | MR | Zbl
,[33] On the Regularity of the Polar Factorization for Time Dependent Maps, Calc. Var. Partial Differential Equations 22 (3) (2005) 343-374. | MR | Zbl
,[34] Regularity of Potential Functions of the Optimal Transportation Problem, Arch. Ration. Mech. Anal. 177 (2) (2005) 151-183. | MR | Zbl
, , ,[35] A Convexity Principle for Interacting Gases, Adv. Math. 128 (1997) 153-179. | MR | Zbl
,[36] Exact Solutions to the Transportation Problem on the Line, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1984) (1999) 1341-1380. | MR | Zbl
,[37] Foundations of Radiation Hydrodynamics, Oxford University Press, 1984. | MR | Zbl
, ,[38] Felix Otto, Doubly degenerate diffusion equations as steepest descent, preprint, 1996. | MR
[39] Mass Transportation Problems, Vols. I. and II, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1998. | MR | Zbl
, ,[40] Tempered Diffusion: a Transport Process With Propagating Fronts and Initial Delay, Phys. Rev. A 46 (1992) 7371-7374.
,[41] Ann. Mat. Pura Appl. 146 (1987) 65-96. | MR | Zbl
, Compact sets in the space ,[42] Navier-Stokes Equation. Theory and Numerical Analysis, Stud. Math. Appl., vol. 2, third ed., North-Holland Publishing Co., Amsterdam, 1984. | MR | Zbl
,[43] Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, Amer. Math. Soc., 2003. | MR | Zbl
,Cited by Sources: