@article{AIHPC_2009__26_6_2521_0, author = {Kelliher, James P. and Filho, Milton C. Lopes and Lopes, Helena J. Nussenzveig}, title = {Vanishing {Viscosity} {Limit} for an {Expanding} {Domain} in {Space}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2521--2537}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.07.007}, mrnumber = {2569907}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.007/} }
TY - JOUR AU - Kelliher, James P. AU - Filho, Milton C. Lopes AU - Lopes, Helena J. Nussenzveig TI - Vanishing Viscosity Limit for an Expanding Domain in Space JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2521 EP - 2537 VL - 26 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.007/ DO - 10.1016/j.anihpc.2009.07.007 LA - en ID - AIHPC_2009__26_6_2521_0 ER -
%0 Journal Article %A Kelliher, James P. %A Filho, Milton C. Lopes %A Lopes, Helena J. Nussenzveig %T Vanishing Viscosity Limit for an Expanding Domain in Space %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2521-2537 %V 26 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.007/ %R 10.1016/j.anihpc.2009.07.007 %G en %F AIHPC_2009__26_6_2521_0
Kelliher, James P.; Filho, Milton C. Lopes; Lopes, Helena J. Nussenzveig. Vanishing Viscosity Limit for an Expanding Domain in Space. Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 6, pp. 2521-2537. doi : 10.1016/j.anihpc.2009.07.007. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.007/
[1] Perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl., vol. 14, Clarendon Press, Oxford University Press, New York, 1998, translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. | MR | Zbl
,[2] Concentrations in Regularizations for 2-D Incompressible Flow, Comm. Pure Appl. Math. 40 (3) (1987) 301-345. | MR | Zbl
, ,[3] Two-Dimensional Incompressible Ideal Flow Around a Small Obstacle, Comm. Partial Differential Equations 28 (1-2) (2003) 349-379. | MR | Zbl
, , ,[4] Two-Dimensional Incompressible Viscous Flow Around a Small Obstacle, Math. Ann. 336 (2) (2006) 449-489. | MR | Zbl
, , ,[5] Incompressible Flow Around a Small Obstacle and the Vanishing Viscosity Limit, Comm. Math. Phys. 289 (2009) 99-115. | MR | Zbl
, , ,[6] Remarks on the Vanishing Obstacle Limit for a 3D Viscous Incompressible Fluid, Proc. Amer. Math. Soc. 137 (2) (2009) 685-694. | MR | Zbl
, ,[7] Remarks on Zero Viscosity Limit for Nonstationary Navier-Stokes Flows With Boundary, in: Seminar on Nonlinear Partial Differential Equations, Berkeley, CA, 1983, Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 85-98. | MR | Zbl
,[8] Expanding Domain Limit for Incompressible Fluids in the Plane, Comm. Math. Phys. 278 (3) (2008) 753-773. | MR | Zbl
,[9] James P. Kelliher, Infinite-energy 2D statistical solutions to the equations of incompressible fluids, preprint. | MR | Zbl
[10] Two-Dimensional Incompressible Ideal Flow Around a Thin Obstacle Tending to a Curve, Ann. Inst. H. Poincaré Anal. Non Lineaire 26 (4) (2009) 1121-1148. | Numdam | MR | Zbl
,[11] Christophe Lacave, Two-dimensional incompressible viscous flow around a thin obstacle tending to a curve, Proc. Royal Soc. Edinburgh: Sect. A Math., in press. | MR
[12] Vortex Dynamics in a Two-Dimensional Domain With Holes and the Small Obstacle Limit, SIAM J. Math. Anal. 39 (2) (2007) 422-436. | MR
,[13] Vorticity and Incompressible Flow, Cambridge Texts Appl. Math., vol. 27, Cambridge University Press, Cambridge, UK, 2002. | MR | Zbl
, ,[14] Navier-Stokes Equations, Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, reprint of the 1984 edition. | MR | Zbl
,Cited by Sources: