@article{AIHPC_2009__26_6_2511_0, author = {Figalli, A. and Maggi, F. and Pratelli, A.}, title = {A {Refined} {Brunn-Minkowski} {Inequality} for {Convex} {Sets}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2511--2519}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.07.004}, mrnumber = {2569906}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.004/} }
TY - JOUR AU - Figalli, A. AU - Maggi, F. AU - Pratelli, A. TI - A Refined Brunn-Minkowski Inequality for Convex Sets JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2511 EP - 2519 VL - 26 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.004/ DO - 10.1016/j.anihpc.2009.07.004 LA - en ID - AIHPC_2009__26_6_2511_0 ER -
%0 Journal Article %A Figalli, A. %A Maggi, F. %A Pratelli, A. %T A Refined Brunn-Minkowski Inequality for Convex Sets %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2511-2519 %V 26 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.004/ %R 10.1016/j.anihpc.2009.07.004 %G en %F AIHPC_2009__26_6_2511_0
Figalli, A.; Maggi, F.; Pratelli, A. A Refined Brunn-Minkowski Inequality for Convex Sets. Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 6, pp. 2511-2519. doi : 10.1016/j.anihpc.2009.07.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.004/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 2000. | MR | Zbl
, , ,[2] Décomposition Polaire Et Réarrangement Monotone Des Champs De Vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305 (19) (1987) 805-808. | MR | Zbl
,[3] Polar Factorization and Monotone Rearrangement of Vector-Valued Functions, Comm. Pure Appl. Math. 44 (4) (1991) 375-417. | MR | Zbl
,[4] Geometric Inequalities, Springer, New York, 1988, Russian original: 1980. | MR | Zbl
, ,[5] The Regularity of Mappings With a Convex Potential, J. Amer. Math. Soc. 5 (1) (1992) 99-104. | MR | Zbl
,[6] Boundary Regularity of Maps With Convex Potentials. II, Ann. of Math. (2) 144 (3) (1996) 453-496. | MR | Zbl
,[7] Stability of the Solution of a Minkowski Equation, Sibirsk. Mat. Zh. 14 (1973) 669-673, 696 (in Russian). | MR | Zbl
,[8] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. | MR | Zbl
, ,[9] Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag New York Inc., New York, 1969, xiv+676 pp. | MR | Zbl
,[10] A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, submitted for publication.
[11] The Brunn-Minkowski Inequality, Bull. Amer. Math. Soc. (N.S.) 39 (3) (2002) 355-405. | MR | Zbl
,[12] On the Brunn-Minkowski Theorem, Geom. Dedicata 27 (3) (1988) 357-371. | MR | Zbl
,[13] Brunn-Minkowskischer Satz Und Isoperimetrie, Math. Z. 66 (1956) 1-8. | MR | Zbl
, ,[14] On the Measure of Sum Sets, I. the Theorems of Brunn, Minkowski and Lusternik, Proc. London Math. Soc. 3 (1953) 182-194. | MR | Zbl
, ,[15] An Inequality for Convex Bodies, Univ. Kentucky Res. Club Bull. 8 (1942) 8-11. | MR | Zbl
,[16] A Convexity Principle for Interacting Gases, Adv. Math. 128 (1) (1997) 153-179. | MR | Zbl
,[17] The Brunn-Minkowski Inequality and Nonconvex Sets, Geom. Dedicata 67 (3) (1997) 337-348. | MR | Zbl
,[18] On the General Brunn-Minkowski Theorem, Beitrage Algebra Geom. 34 (1) (1993) 1-8. | MR | Zbl
,[19] Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | MR | Zbl
,Cited by Sources: