Best constants in a borderline case of second-order Moser type inequalities
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 73-93.

We study optimal embeddings for the space of functions whose Laplacian Δu belongs to L 1 (Ω), where Ω N is a bounded domain. This function space turns out to be strictly larger than the Sobolev space W 2,1 (Ω) in which the whole set of second-order derivatives is considered. In particular, in the limiting Sobolev case, when N=2, we establish a sharp embedding inequality into the Zygmund space L 𝑒𝑥𝑝 (Ω). On one hand, this result enables us to improve the Brezis–Merle (Brezis and Merle (1991) [13]) regularity estimate for the Dirichlet problem Δu=f(x)L 1 (Ω), u=0 on ∂Ω; on the other hand, it represents a borderline case of D.R. Adams' (1988) [1] generalization of Trudinger–Moser type inequalities to the case of higher-order derivatives. Extensions to dimension N3 are also given. Besides, we show how the best constants in the embedding inequalities change under different boundary conditions.

DOI : 10.1016/j.anihpc.2009.07.006
Classification : 46E35, 35B65
Mots clés : Sobolev embeddings, Pohožaev, Strichartz and Trudinger–Moser inequalities, Best constants, Elliptic equations, Regularity estimates in $ {L}^{1}$, Brezis–Merle type results
@article{AIHPC_2010__27_1_73_0,
     author = {Cassani, Daniele and Ruf, Bernhard and Tarsi, Cristina},
     title = {Best constants in a borderline case of second-order {Moser} type inequalities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {73--93},
     publisher = {Elsevier},
     volume = {27},
     number = {1},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.07.006},
     zbl = {1194.46048},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/}
}
TY  - JOUR
AU  - Cassani, Daniele
AU  - Ruf, Bernhard
AU  - Tarsi, Cristina
TI  - Best constants in a borderline case of second-order Moser type inequalities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 73
EP  - 93
VL  - 27
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/
DO  - 10.1016/j.anihpc.2009.07.006
LA  - en
ID  - AIHPC_2010__27_1_73_0
ER  - 
%0 Journal Article
%A Cassani, Daniele
%A Ruf, Bernhard
%A Tarsi, Cristina
%T Best constants in a borderline case of second-order Moser type inequalities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 73-93
%V 27
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/
%R 10.1016/j.anihpc.2009.07.006
%G en
%F AIHPC_2010__27_1_73_0
Cassani, Daniele; Ruf, Bernhard; Tarsi, Cristina. Best constants in a borderline case of second-order Moser type inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 73-93. doi : 10.1016/j.anihpc.2009.07.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/

[1] D.R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398 | Zbl

[2] R.A. Adams, Reduced Sobolev inequalities, Canad. Math. Bull. 31 (1988) | Zbl

[3] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Pure Appl. Math. vol. 140, Elsevier (2003) | Zbl

[4] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727 | Zbl

[5] A. Alvino, Sulla disuguaglianza di Sobolev in spazi di Lorentz, Boll. Unione Mat. Ital. 14 (1977), 148-156 | Zbl

[6] A. Alvino, V. Ferone, G. Trombetti, Estimates for the gradient of solutions of nonlinear elliptic equations with L 1 data, Ann. Mat. Pura Appl. 178 (2000), 129-142 | Zbl

[7] A. Alvino, P.L. Lions, G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), 185-220 | Zbl

[8] P. Bénilan, L. Boccardo, T. Gallouët, M. Pierre, J.L. Vazquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 (1995), 241-273 | EuDML | Numdam | Zbl

[9] J. Bastero, M. Milman, F.J. Ruiz Blasco, A note on L(,q) spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), 1215-1230 | Zbl

[10] C. Bennett, K. Rudnick, On Lorentz–Zygmund spaces, Dissertationes Math. 175 (1980), 1-72 | Zbl

[11] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math. vol. 129, Boston Academic Press, Inc. (1988) | Zbl

[12] L. Boccardo, Minimization problems with singular data, Milan J. Math. 74 (2006), 265-278 | Zbl

[13] H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of -Δu=V(x)e u in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253 | Zbl

[14] H. Brezis, W. Strauss, Semi-linear second order elliptic equations in L 1 , J. Math. Soc. Japan 25 (1973), 565-590 | Zbl

[15] H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings, Comm. Partial Differential Equations 5 (1980), 773-789 | Zbl

[16] V.I. Burenkov, Sobolev Spaces on Domains, Teubner-Texte Math. vol. 137, B.G. Teubner, Stuttgart (1998) | Zbl

[17] A. Cianchi, Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math. 18 (2006), 745-767 | Zbl

[18] A. Cianchi, Symmetrization and second order Sobolev inequalities, Ann. Mat. Pura Appl. 183 (2004), 45-77 | Zbl

[19] M. Cwikel, E. Pustylnik, Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl. 4 (1998), 433-446 | EuDML | Zbl

[20] D.E. Edmunds, D. Fortunato, E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Ration. Mech. Anal. 112 (1990), 269-289 | Zbl

[21] D.E. Edmunds, R. Kerman, L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307-355 | Zbl

[22] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag (1998) | Zbl

[23] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102 | EuDML | Zbl

[24] V.P. Ill'N, Conditions of validity of inequalities between L p -norms of partial derivatives of functions of several variables, Proc. Steklov Inst. Math. 96 (1968), 259-305 | Zbl

[25] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math. vol. 1150, Springer-Verlag, Berlin (1985) | Zbl

[26] R. Kerman, L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (2006), 535-570 | Zbl

[27] S. Kesavan, Symmetrization & Applications, Ser. Anal. vol. 3, World Scientific (2006) | Zbl

[28] M. Krbec, H.-J. Shmeisser, Imbedding of Brezis–Wainger type. The case of missing derivatives, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 667-700 | Zbl

[29] G.G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37-55 | Zbl

[30] V.G. Maz'Ya, Some estimates for solutions of elliptic second-order equations, Soviet Math. Dokl. 2 (1961), 413-415 | Zbl

[31] M. Milman, E. Pustylnik, On sharp higher order Sobolev embeddings, Commun. Contemp. Math. 6 (2004), 495-511 | Zbl

[32] R. O'Neil, Convolution operators and L p,q spaces, Duke Math. J. 30 (1963), 129-142 | Zbl

[33] D. Ornstein, A non-equality for differential operators in the L 1 norm, Arch. Ration. Mech. Anal. 11 (1962), 40-49 | Zbl

[34] L. Orsina, Solvability of linear and semilinear eigenvalue problems with L 1 data, Rend. Sem. Mat. Univ. Padova 90 (1993), 207-238 | EuDML | Numdam | Zbl

[35] J. Peetre, Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279-317 | EuDML | Numdam | Zbl

[36] S.I. Pohožaev, The Sobolev embedding in the case pl=n, Proc. Tech. Sci. Conf. on Adv. Sci., Research 1964–1965, Moscow Energy Inst., Mathematics Section, Moscow (1965), 158-170

[37] S. Poornima, An embedding theorem for the Sobolev space W 1,1 , Bull. Sci. Math. 107 no. 2 (1983), 253-259 | Zbl

[38] G. Stampacchia, Some limit cases of L p -estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math. 16 (1963), 505-510 | Zbl

[39] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (1970) | Zbl

[40] R.S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842 | Zbl

[41] C. Swanson, The best Sobolev constant, Appl. Anal. 47 (1992), 227-239 | Zbl

[42] G. Talenti, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (1976), 697-718 | EuDML | Numdam | Zbl

[43] L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. (1998), 479-500 | EuDML | Zbl

[44] R.C.A.M. Van Der Vorst, Best constant for the embedding of the space H 2 H 0 1 (Ω) into L 2N/(N-4) (Ω), Differential Integral Equations 6 (1993), 259-276 | Zbl

Cité par Sources :