We study optimal embeddings for the space of functions whose Laplacian Δu belongs to , where is a bounded domain. This function space turns out to be strictly larger than the Sobolev space in which the whole set of second-order derivatives is considered. In particular, in the limiting Sobolev case, when , we establish a sharp embedding inequality into the Zygmund space . On one hand, this result enables us to improve the Brezis–Merle (Brezis and Merle (1991) [13]) regularity estimate for the Dirichlet problem , on ∂Ω; on the other hand, it represents a borderline case of D.R. Adams' (1988) [1] generalization of Trudinger–Moser type inequalities to the case of higher-order derivatives. Extensions to dimension are also given. Besides, we show how the best constants in the embedding inequalities change under different boundary conditions.
Mots clés : Sobolev embeddings, Pohožaev, Strichartz and Trudinger–Moser inequalities, Best constants, Elliptic equations, Regularity estimates in $ {L}^{1}$, Brezis–Merle type results
@article{AIHPC_2010__27_1_73_0, author = {Cassani, Daniele and Ruf, Bernhard and Tarsi, Cristina}, title = {Best constants in a borderline case of second-order {Moser} type inequalities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {73--93}, publisher = {Elsevier}, volume = {27}, number = {1}, year = {2010}, doi = {10.1016/j.anihpc.2009.07.006}, zbl = {1194.46048}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/} }
TY - JOUR AU - Cassani, Daniele AU - Ruf, Bernhard AU - Tarsi, Cristina TI - Best constants in a borderline case of second-order Moser type inequalities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 73 EP - 93 VL - 27 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/ DO - 10.1016/j.anihpc.2009.07.006 LA - en ID - AIHPC_2010__27_1_73_0 ER -
%0 Journal Article %A Cassani, Daniele %A Ruf, Bernhard %A Tarsi, Cristina %T Best constants in a borderline case of second-order Moser type inequalities %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 73-93 %V 27 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/ %R 10.1016/j.anihpc.2009.07.006 %G en %F AIHPC_2010__27_1_73_0
Cassani, Daniele; Ruf, Bernhard; Tarsi, Cristina. Best constants in a borderline case of second-order Moser type inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 73-93. doi : 10.1016/j.anihpc.2009.07.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.006/
[1] A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398 | Zbl
,[2] Reduced Sobolev inequalities, Canad. Math. Bull. 31 (1988) | Zbl
,[3] Sobolev Spaces, Pure Appl. Math. vol. 140, Elsevier (2003) | Zbl
, ,[4] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727 | Zbl
, , ,[5] Sulla disuguaglianza di Sobolev in spazi di Lorentz, Boll. Unione Mat. Ital. 14 (1977), 148-156 | Zbl
,[6] Estimates for the gradient of solutions of nonlinear elliptic equations with data, Ann. Mat. Pura Appl. 178 (2000), 129-142 | Zbl
, , ,[7] On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), 185-220 | Zbl
, , ,[8] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 (1995), 241-273 | EuDML | Numdam | Zbl
, , , , ,[9] A note on spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), 1215-1230 | Zbl
, , ,[10] On Lorentz–Zygmund spaces, Dissertationes Math. 175 (1980), 1-72 | Zbl
, ,[11] Interpolation of Operators, Pure Appl. Math. vol. 129, Boston Academic Press, Inc. (1988) | Zbl
, ,[12] Minimization problems with singular data, Milan J. Math. 74 (2006), 265-278 | Zbl
,[13] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253 | Zbl
, ,[14] Semi-linear second order elliptic equations in , J. Math. Soc. Japan 25 (1973), 565-590 | Zbl
, ,[15] A note on limiting cases of Sobolev embeddings, Comm. Partial Differential Equations 5 (1980), 773-789 | Zbl
, ,[16] Sobolev Spaces on Domains, Teubner-Texte Math. vol. 137, B.G. Teubner, Stuttgart (1998) | Zbl
,[17] Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math. 18 (2006), 745-767 | Zbl
,[18] Symmetrization and second order Sobolev inequalities, Ann. Mat. Pura Appl. 183 (2004), 45-77 | Zbl
,[19] Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl. 4 (1998), 433-446 | EuDML | Zbl
, ,[20] Critical exponents, critical dimensions and the biharmonic operator, Arch. Ration. Mech. Anal. 112 (1990), 269-289 | Zbl
, , ,[21] Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307-355 | Zbl
, , ,[22] Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag (1998) | Zbl
, ,[23] Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102 | EuDML | Zbl
,[24] Conditions of validity of inequalities between -norms of partial derivatives of functions of several variables, Proc. Steklov Inst. Math. 96 (1968), 259-305 | Zbl
,[25] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math. vol. 1150, Springer-Verlag, Berlin (1985) | Zbl
,[26] Optimal Sobolev imbeddings, Forum Math. 18 (2006), 535-570 | Zbl
, ,[27] Symmetrization & Applications, Ser. Anal. vol. 3, World Scientific (2006) | Zbl
,[28] Imbedding of Brezis–Wainger type. The case of missing derivatives, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 667-700 | Zbl
, ,[29] Some new functional spaces, Ann. of Math. 51 (1950), 37-55 | Zbl
,[30] Some estimates for solutions of elliptic second-order equations, Soviet Math. Dokl. 2 (1961), 413-415 | Zbl
,[31] On sharp higher order Sobolev embeddings, Commun. Contemp. Math. 6 (2004), 495-511 | Zbl
, ,[32] Convolution operators and spaces, Duke Math. J. 30 (1963), 129-142 | Zbl
,[33] A non-equality for differential operators in the norm, Arch. Ration. Mech. Anal. 11 (1962), 40-49 | Zbl
,[34] Solvability of linear and semilinear eigenvalue problems with data, Rend. Sem. Mat. Univ. Padova 90 (1993), 207-238 | EuDML | Numdam | Zbl
,[35] Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279-317 | EuDML | Numdam | Zbl
,[36] The Sobolev embedding in the case , Proc. Tech. Sci. Conf. on Adv. Sci., Research 1964–1965, Moscow Energy Inst., Mathematics Section, Moscow (1965), 158-170
,[37] An embedding theorem for the Sobolev space , Bull. Sci. Math. 107 no. 2 (1983), 253-259 | Zbl
,[38] Some limit cases of -estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math. 16 (1963), 505-510 | Zbl
,[39] Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (1970) | Zbl
,[40] A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842 | Zbl
,[41] The best Sobolev constant, Appl. Anal. 47 (1992), 227-239 | Zbl
,[42] Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (1976), 697-718 | EuDML | Numdam | Zbl
,[43] Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. (1998), 479-500 | EuDML | Zbl
,[44] Best constant for the embedding of the space into , Differential Integral Equations 6 (1993), 259-276 | Zbl
,Cité par Sources :