Eventual regularization for the slightly supercritical quasi-geostrophic equation
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 693-704.

Dans cet article, nous montrons que les solutions faibles de l'équation quasi-géostrophique légèrement sur-critique deviennent régulières en temps grand. La démonstration utilise des idées d'un article récent de Caffarelli et Vasseur et repose sur un argument de type de De Giorgi.

We prove that weak solutions of the slightly supercritical quasi-geostrophic equation become smooth for large time. The proof uses ideas from a recent article of Caffarelli and Vasseur and is based on an argument in the style of De Giorgi.

@article{AIHPC_2010__27_2_693_0,
     author = {Silvestre, Luis},
     title = {Eventual regularization for the slightly supercritical quasi-geostrophic equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {693--704},
     publisher = {Elsevier},
     volume = {27},
     number = {2},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.11.006},
     mrnumber = {2595196},
     zbl = {1187.35186},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/}
}
TY  - JOUR
AU  - Silvestre, Luis
TI  - Eventual regularization for the slightly supercritical quasi-geostrophic equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 693
EP  - 704
VL  - 27
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/
DO  - 10.1016/j.anihpc.2009.11.006
LA  - en
ID  - AIHPC_2010__27_2_693_0
ER  - 
%0 Journal Article
%A Silvestre, Luis
%T Eventual regularization for the slightly supercritical quasi-geostrophic equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 693-704
%V 27
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/
%R 10.1016/j.anihpc.2009.11.006
%G en
%F AIHPC_2010__27_2_693_0
Silvestre, Luis. Eventual regularization for the slightly supercritical quasi-geostrophic equation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 693-704. doi : 10.1016/j.anihpc.2009.11.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/

[1] Luis Caffarelli, Luis Silvestre, An extension problem related to the fractional laplacian, Comm. Partial Differential Equations 32 no. 7–9 (2007), 1245-1260 | MR | Zbl

[2] Luis Caffarelli, Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., in press | MR

[3] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincare Anal. Non Lineaire 25 no. 6 (2008), 1103-1110 | EuDML | Numdam | MR | Zbl

[4] P. Constantin, J. Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), 159-180 | EuDML | Numdam | MR | Zbl

[5] Peter Constantin, Jiahong Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 no. 5 (1999), 937-948 | MR | Zbl

[6] Antonio Córdoba, Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 no. 3 (2004), 511-528 | MR | Zbl

[7] A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR | Zbl

Cité par Sources :