We consider the fractional Burgers' equation on with the critical dissipation term. We follow the parabolic De-Giorgi's method of Caffarelli and Vasseur and show existence of smooth solutions given any initial datum in .
Nous considérons l'équation de Burgers avec diffusion fractionnelle dans . Nous montrons l'existence de solutions globales regulières pour toute donnée initiale dans , en utilisant une version parabolique de la méthode de De Giorgi introduite par Caffarelli et Vasseur.
@article{AIHPC_2010__27_2_471_0, author = {Chan, Chi Hin and Czubak, Magdalena}, title = {Regularity of solutions for the critical {\protect\emph{N}-dimensional} {Burgers'} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {471--501}, publisher = {Elsevier}, volume = {27}, number = {2}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.008}, mrnumber = {2595188}, zbl = {1189.35354}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.008/} }
TY - JOUR AU - Chan, Chi Hin AU - Czubak, Magdalena TI - Regularity of solutions for the critical N-dimensional Burgers' equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 471 EP - 501 VL - 27 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.008/ DO - 10.1016/j.anihpc.2009.11.008 LA - en ID - AIHPC_2010__27_2_471_0 ER -
%0 Journal Article %A Chan, Chi Hin %A Czubak, Magdalena %T Regularity of solutions for the critical N-dimensional Burgers' equation %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 471-501 %V 27 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.008/ %R 10.1016/j.anihpc.2009.11.008 %G en %F AIHPC_2010__27_2_471_0
Chan, Chi Hin; Czubak, Magdalena. Regularity of solutions for the critical N-dimensional Burgers' equation. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 2, pp. 471-501. doi : 10.1016/j.anihpc.2009.11.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.008/
[1] Non-uniqueness of weak solutions for the fractal burgers equation, arXiv:0907.3695 (2009) | Numdam | MR | Zbl
, ,[2] Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 no. 3 (2007), 479-499 | MR | Zbl
, , ,[3] Asymptotic properties of entropy solutions to fractal burgers equation, arXiv:0903.3394 (2009) | MR | Zbl
, , ,[4] An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 no. 7-9 (2007), 1245-1260 | MR | Zbl
, ,[5] Luis Caffarelli, Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., in press; arXiv:math/0608447 | MR
[6] On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50 no. special issue (2001), 97-107 | MR | Zbl
, , ,[7] Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 no. 5 (1999), 937-948 | MR | Zbl
, ,[8] A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA 100 no. 26 (2003), 15316-15317 | MR | Zbl
, ,[9] A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 no. 3 (2004), 511-528 | MR | Zbl
, ,[10] Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst. 21 no. 4 (2008), 1095-1101 | MR | Zbl
, ,[11] Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J. 58 no. 2 (2009), 807-821 | MR | Zbl
, , ,[12] A regularity criterion for the dissipative quasi-geostrophic equations, arXiv:0710.5201 (2007)
, ,[13] Global solution smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ. 3 no. 3 (2003), 499-521 | MR | Zbl
, , ,[14] On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal. 39 no. 5 (2008), 1536-1549 | MR | Zbl
, , ,[15] Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR | Zbl
, , ,[16] Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 no. 3 (2008), 211-240 | MR | Zbl
, , ,[17] Global well-posedness of the critical Burgers equation in critical Besov spaces, arXiv:0805.3465 | MR | Zbl
, ,[18] Serge Resnick, Dynamical problems in nonlinear advective partial differential equations, PhD thesis, University of Chicago, 1995
Cited by Sources: