We study the equation , , in where , . Let be a coordinate system such that and denote a point by . Assume that when but as . For this class of equations we obtain sharp necessary and sufficient conditions in order that singularities on the boundary do not propagate in the interior.
@article{AIHPC_2013__30_2_315_0, author = {Marcus, Moshe and Shishkov, Andrey}, title = {Fading absorption in non-linear elliptic equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {315--336}, publisher = {Elsevier}, volume = {30}, number = {2}, year = {2013}, doi = {10.1016/j.anihpc.2012.08.002}, mrnumber = {3035979}, zbl = {1295.35208}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.08.002/} }
TY - JOUR AU - Marcus, Moshe AU - Shishkov, Andrey TI - Fading absorption in non-linear elliptic equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 315 EP - 336 VL - 30 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.08.002/ DO - 10.1016/j.anihpc.2012.08.002 LA - en ID - AIHPC_2013__30_2_315_0 ER -
%0 Journal Article %A Marcus, Moshe %A Shishkov, Andrey %T Fading absorption in non-linear elliptic equations %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 315-336 %V 30 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.08.002/ %R 10.1016/j.anihpc.2012.08.002 %G en %F AIHPC_2013__30_2_315_0
Marcus, Moshe; Shishkov, Andrey. Fading absorption in non-linear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 2, pp. 315-336. doi : 10.1016/j.anihpc.2012.08.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.08.002/
[1] Asymptotic behavior of solutions and their derivatives, for semilinear, elliptic problems with blowup at the boundary, Ann. Inst. H. Poincare 12 (1995), 155-171 | EuDML | Numdam | MR | Zbl
, ,[2] Comportement asymptotique de solutions dʼéquations elliptiques semi-linéares dans un cylindre, Asymptot. Anal. 10 (1995), 335-366 | MR | Zbl
,[3] On solutions of , Comm. Pure Appl. Math. 10 (1957), 503-510 | MR | Zbl
,[4] The boundary trace of positive solutions of semilinear elliptic equations: The subcritical case, Arch. Ration. Mech. Anal. 144 (1998), 201-231 | MR | Zbl
, ,[5] Initial trace of positive solutions to semilinear parabolic inequalities, Adv. Nonlinear Stud. 2 (2002), 395-436 | MR | Zbl
, ,[6] Boundary trace of positive solutions of nonlinear elliptic inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) III (2004), 481-533 | EuDML | Numdam | MR | Zbl
, ,[7] On the inequality , Pacific J. Math. 7 (1957), 1641-1647 | MR | Zbl
,[8] The balance between diffusion and absorption in semilinear parabolic equations, Rend. Lincei Mat. Appl. 18 (2007), 59-96 | MR | Zbl
, ,[9] Diffusion versus absorption in semilinear elliptic equations, J. Math. Anal. Appl. 352 (2009), 206-217 | MR | Zbl
, ,[10] Singular solutions of some nonlinear parabolic equations with spatially inhomogeneous absorption, Calc. Var. Partial Differential Equations 33 (2008), 343-375 | MR | Zbl
, ,[11] Propagation of singularities of nonlinear heat flow in fissured media, arXiv:1103.5893v1 | MR | Zbl
, ,Cité par Sources :