We consider the Ginzburg–Landau functional with a variable applied magnetic field in a bounded and smooth two dimensional domain. We determine an accurate asymptotic formula for the minimizing energy when the Ginzburg–Landau parameter and the magnetic field are large and of the same order. As a consequence, it is shown how bulk superconductivity decreases in average as the applied magnetic field increases.
Keywords: Superconductivity, Ginzburg–Landau, Variable magnetic field
@article{AIHPC_2015__32_2_325_0, author = {Attar, K.}, title = {The ground state energy of the two dimensional {Ginzburg{\textendash}Landau} functional with variable magnetic field}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {325--345}, publisher = {Elsevier}, volume = {32}, number = {2}, year = {2015}, doi = {10.1016/j.anihpc.2013.12.002}, mrnumber = {3325240}, zbl = {1320.82071}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.002/} }
TY - JOUR AU - Attar, K. TI - The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 325 EP - 345 VL - 32 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.002/ DO - 10.1016/j.anihpc.2013.12.002 LA - en ID - AIHPC_2015__32_2_325_0 ER -
%0 Journal Article %A Attar, K. %T The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 325-345 %V 32 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.002/ %R 10.1016/j.anihpc.2013.12.002 %G en %F AIHPC_2015__32_2_325_0
Attar, K. The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 2, pp. 325-345. doi : 10.1016/j.anihpc.2013.12.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.002/
[1] Lowest Landau level approach in superconductivity for the Abrikosov lattice close to , Sel. Math. New Ser. 13 no. 2 (2007), 183 -202 | MR | Zbl
, ,[2] Optimal uniform elliptic estimates for the Ginzburg–Landau system, Adventures in Mathematical Physics, Contemp. Math. vol. 447 , Amer. Math. Soc. (2007), 83 -102 | MR | Zbl
, ,[3] Spectral Methods in Surface Superconductivity, Prog. Nonlinear Differ. Equ. Appl. vol. 77 , Birkhäuser, Boston (2010) | MR | Zbl
, ,[4] The ground state energy of the three dimensional Ginzburg–Landau functional part I: Bulk regime, Commun. Partial Differ. Equ. 38 no. 2 (2013), 339 -383 | MR | Zbl
, ,[5] Finite Elements Methods for Navier–Stokes Equations, Springer (1986) | MR | Zbl
, ,[6] Surface superconductivity in applied magnetic fields above , Commun. Math. Phys. 228 no. 2 (2002), 327 -370 | MR | Zbl
,[7] Surface superconductivity in 3 dimensions, Trans. Am. Math. Soc. 356 no. 10 (2004), 3899 -3937 | MR | Zbl
,[8] Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains, Trans. Am. Math. Soc. 354 no. 10 (2002), 4201 -4227 | MR | Zbl
, ,[9] The decrease of bulk-superconductivity close to the second critical field in the Ginzburg–Landau model, SIAM J. Math. Anal. 34 no. 4 (2003), 939 -956 | MR | Zbl
, ,Cited by Sources: