Stable regular critical points of the Mumford–Shah functional are local minimizers
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 533-570.

In this paper it is shown that any regular critical point of the Mumford–Shah functional, with positive definite second variation, is an isolated local minimizer with respect to competitors which are sufficiently close in the L 1 -topology. A global minimality result in small tubular neighborhoods of the discontinuity set is also established.

DOI: 10.1016/j.anihpc.2014.01.006
Classification: 49K10,  49Q20
Keywords: Mumford–Shah functional, Free discontinuity problems, Second variation
@article{AIHPC_2015__32_3_533_0,
     author = {Bonacini, M. and Morini, M.},
     title = {Stable regular critical points of the {Mumford{\textendash}Shah} functional are local minimizers},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {533--570},
     publisher = {Elsevier},
     volume = {32},
     number = {3},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.01.006},
     zbl = {1316.49026},
     mrnumber = {3353700},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.01.006/}
}
TY  - JOUR
AU  - Bonacini, M.
AU  - Morini, M.
TI  - Stable regular critical points of the Mumford–Shah functional are local minimizers
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
DA  - 2015///
SP  - 533
EP  - 570
VL  - 32
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.01.006/
UR  - https://zbmath.org/?q=an%3A1316.49026
UR  - https://www.ams.org/mathscinet-getitem?mr=3353700
UR  - https://doi.org/10.1016/j.anihpc.2014.01.006
DO  - 10.1016/j.anihpc.2014.01.006
LA  - en
ID  - AIHPC_2015__32_3_533_0
ER  - 
%0 Journal Article
%A Bonacini, M.
%A Morini, M.
%T Stable regular critical points of the Mumford–Shah functional are local minimizers
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 533-570
%V 32
%N 3
%I Elsevier
%U https://doi.org/10.1016/j.anihpc.2014.01.006
%R 10.1016/j.anihpc.2014.01.006
%G en
%F AIHPC_2015__32_3_533_0
Bonacini, M.; Morini, M. Stable regular critical points of the Mumford–Shah functional are local minimizers. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 533-570. doi : 10.1016/j.anihpc.2014.01.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.01.006/

[1] E. Acerbi, N. Fusco, M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys. 322 (2013), 515 -557 | MR | Zbl

[2] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York (2000) | MR | Zbl

[3] J.-F. Babadjian, A. Giacomini, Existence of strong solutions for quasi-static evolution in brittle fracture, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) (2014), http://dx.doi.org/10.2422/2036-2145.201106_003 | Zbl

[4] M. Bonacini, Minimality and stability results for a class of free-discontinuity and nonlocal isoperimetric problems, https://digitallibrary.sissa.it/handle/1963/7191 | Zbl

[5] A. Braides, Approximation of Free-Discontinuity Problems, Lect. Notes Math. vol. 1694 , Springer-Verlag, Berlin (1998) | MR | Zbl

[6] F. Cagnetti, M.G. Mora, M. Morini, A second order minimality condition for the Mumford–Shah functional, Calc. Var. Partial Differ. Equ. 33 (2008), 37 -74 | MR | Zbl

[7] M. Carriero, A. Leaci, Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Anal. 15 (1990), 661 -677 | MR | Zbl

[8] M. Cicalese, G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012), 617 -643 | MR | Zbl

[9] G. Dal Maso, M.G. Mora, M. Morini, Local calibrations for minimizers of the Mumford–Shah functional with rectilinear discontinuity sets, J. Math. Pures Appl. 79 (2000), 141 -162 | MR | Zbl

[10] G. David, Singular Sets of Minimizers for the Mumford–Shah Functional, Prog. Math. vol. 233 , Birkhäuser Verlag, Basel (2005) | MR | Zbl

[11] E. De Giorgi, M. Carriero, A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal. 108 (1989), 195 -218 | MR | Zbl

[12] N. Fusco, M. Morini, Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and qualitative properties of solutions, Arch. Ration. Mech. Anal. 203 (2012), 247 -327 | MR | Zbl

[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. vol. 24 , Pitman (Advanced Publishing Program), Boston (1985) | MR | Zbl

[14] M. Grüter, Boundary regularity for solutions of a partitioning problem, Arch. Ration. Mech. Anal. 97 (1987), 261 -270 | MR | Zbl

[15] V. Julin, G. Pisante, Minimality via second variation for microphase separation of diblock copolymer melts, preprint, 2013.

[16] H. Koch, G. Leoni, M. Morini, On optimal regularity of free boundary problems and a conjecture of De Giorgi, Commun. Pure Appl. Math. 58 (2005), 1051 -1076 | MR | Zbl

[17] R.V. Kohn, P. Sternberg, Local minimisers and singular perturbations, Proc. R. Soc. Edinb., Sect. A, Math. 111 (1989), 69 -84 | MR | Zbl

[18] F. Maddalena, S. Solimini, Blow-up techniques and regularity near the boundary for free discontinuity problems, Adv. Nonlinear Stud. 1 (2001), 1 -41 | MR | Zbl

[19] M.G. Mora, M. Morini, Local calibrations for minimizers of the Mumford–Shah functional with a regular discontinuity set, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001), 403 -436 | EuDML | Numdam | MR | Zbl

[20] M. Morini, Free discontinuity problems: calibration and approximation of solutions, https://digitallibrary.sissa.it/handle/1963/5398

[21] M. Morini, Global calibrations for the non-homogeneous Mumford–Shah functional, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 603 -648 | EuDML | Numdam | MR | Zbl

[22] D. Mumford, J. Shah, Boundary detection by minimizing functionals, I, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco (1985)

[23] D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math. 17 (1989), 577 -685 | MR | Zbl

[24] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis 3, Australian National University, Centre for Mathematical Analysis, Canberra (1983) | MR | Zbl

[25] P. Sternberg, K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503 (1998), 63 -85 | MR | Zbl

Cited by Sources: