Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 687-713.

We consider the Cauchy problem for the critical Burgers equation. The existence and the uniqueness of global solutions for small initial data are studied in the Besov space B ˙ ,1 0 ( n ) and it is shown that the global solutions are bounded in time. We also study the large time behavior of the solutions with the initial data u 0 L 1 ( n )B ˙ ,1 0 ( n ) to show that the solution behaves like the Poisson kernel.

DOI: 10.1016/j.anihpc.2014.03.002
Keywords: Burgers equation, Besov spaces, Large time behavior, Poisson kernel
@article{AIHPC_2015__32_3_687_0,
     author = {Iwabuchi, Tsukasa},
     title = {Global solutions for the critical {Burgers} equation in the {Besov} spaces and the large time behavior},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {687--713},
     publisher = {Elsevier},
     volume = {32},
     number = {3},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.03.002},
     mrnumber = {3353705},
     zbl = {1320.35073},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.002/}
}
TY  - JOUR
AU  - Iwabuchi, Tsukasa
TI  - Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 687
EP  - 713
VL  - 32
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.002/
DO  - 10.1016/j.anihpc.2014.03.002
LA  - en
ID  - AIHPC_2015__32_3_687_0
ER  - 
%0 Journal Article
%A Iwabuchi, Tsukasa
%T Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 687-713
%V 32
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.002/
%R 10.1016/j.anihpc.2014.03.002
%G en
%F AIHPC_2015__32_3_687_0
Iwabuchi, Tsukasa. Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 687-713. doi : 10.1016/j.anihpc.2014.03.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.002/

[1] N. Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ. 7 no. 1 (2007), 145 -175 | MR | Zbl

[2] N. Alibaud, B. Andreianov, Non-uniqueness of weak solutions for the fractal Burgers equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 no. 4 (2010), 997 -1016 | Numdam | MR | Zbl

[3] N. Alibaud, J. Droniou, J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 no. 3 (2007), 479 -499 | MR | Zbl

[4] N. Alibaud, C. Imbert, G. Karch, Asymptotic properties of entropy solutions to fractal Burgers equation, SIAM J. Math. Anal. 42 no. 1 (2010), 354 -376 | MR | Zbl

[5] I. Bejenaru, T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal. 233 no. 1 (2006), 228 -259 | MR | Zbl

[6] P. Biler, G. Karch, W.A. Woyczynski, Asymptotics for multifractal conservation laws, Stud. Math. 135 no. 3 (1999), 231 -252 | EuDML | MR | Zbl

[7] P. Biler, G. Karch, W.A. Woyczynski, Multifractal and Lévy conservation laws, C. R. Acad. Sci. Paris Sér. I Math. 330 no. 5 (2000), 343 -348 | MR | Zbl

[8] P. Biler, G. Karch, W.A. Woyczynski, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 no. 5 (2001), 613 -637 | EuDML | Numdam | MR | Zbl

[9] P. Biler, G. Karch, W.A. Woyczynski, Asymptotics for conservation laws involving Lévy diffusion generators, Stud. Math. 148 no. 2 (2001), 171 -192 | EuDML | MR | Zbl

[10] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Super. (4) 14 no. 2 (1981), 209 -246 | EuDML | Numdam | MR | Zbl

[11] D. Chae, On the well-posedness of the Euler equations in the Triebel–Lizorkin spaces, Commun. Pure Appl. Math. 55 no. 5 (2002), 654 -678 | MR | Zbl

[12] D. Chae, J. Lee, Local existence and blow-up criterion of the inhomogeneous Euler equations, J. Math. Fluid Mech. 5 (2003), 144 -165 | MR | Zbl

[13] C.H. Chan, M. Czubak, Regularity of solutions for the critical N-dimensional Burgers' equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 no. 2 (2010), 471 -501 | Numdam | MR | Zbl

[14] H. Dong, D. Du, D. Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J. 58 no. 2 (2009), 807 -821 | MR | Zbl

[15] J. Droniou, T. Gallouet, J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ. 3 no. 3 (2003), 499 -521 | MR | Zbl

[16] M. Escobedo, E. Zuazua, Large time behavior for convection–diffusion equations in R n , J. Funct. Anal. 100 no. 1 (1991), 119 -161 | MR | Zbl

[17] K. Ishige, T. Kawakami, Refined asymptotic profiles for a semilinear heat equation, Math. Ann. 353 no. 1 (2012), 161 -192 | MR | Zbl

[18] M. Kato, Sharp asymptotics for a parabolic system of chemotaxis in one space dimension, Differ. Integral Equ. 22 no. 1–2 (2009), 35 -51 | MR | Zbl

[19] G. Karch, C. Miao, X. Xu, On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal. 39 no. 5 (2008), 1536 -1549 | MR | Zbl

[20] A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 no. 3 (2008), 211 -240 | MR | Zbl

[21] H. Kozono, T. Ogawa, Y. Taniuchi, Navier–Stokes equations in the Besov space near L and BMO , Kyushu J. Math. 57 (2003), 303 -324 | MR | Zbl

[22] H. Kozono, M. Yamazaki, Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data, Commun. Partial Differ. Equ. 19 no. 5–6 (1994), 959 -1014 | MR | Zbl

[23] C. Miao, G. Wu, Global well-posedness of the critical Burgers equation in critical Besov spaces, J. Differ. Equ. 247 no. 6 (2009), 1673 -1693 | MR | Zbl

[24] T. Nagai, R. Syukuinn, M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in R n , Funkc. Ekvacioj 46 no. 3 (2003), 383 -407 | MR | Zbl

[25] T. Nagai, T. Yamada, Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space, J. Math. Anal. Appl. 336 no. 1 (2007), 704 -726 | MR | Zbl

[26] H.C. Pak, Y.J. Park, Existence of solution for the Euler equations in a critical Besov space B ,1 1 (R n ) , Commun. Partial Differ. Equ. 29 no. 7–8 (2004), 1149 -1166 | Zbl

[27] L. Silvestre, On the differentiability of the solution to the Hamilton–Jacobi equation with critical fractional diffusion, Adv. Math. 226 no. 2 (2011), 2020 -2039 | MR | Zbl

[28] H. Triebel, Theory of Function Spaces, Birkhäuser-Verlag, Basel (1983) | MR

[29] M. Yamamoto, Asymptotic expansion of solutions to the dissipative equation with fractional Laplacian, SIAM J. Math. Anal. 44 no. 6 (2012), 3786 -3805 | MR | Zbl

Cited by Sources: