Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 23-65.

For AM2×2 let S(A)=ATA, i.e. the symmetric part of the polar decomposition of A. We consider the relation between two quasiregular mappings whose symmetric part of gradient are close. Our main result is the following. Suppose v,uW1,2(B1(0):R2) are Q-quasiregular mappings with B1(0)det(Du)pdzCp for some p(0,1) and B1(0)|Du|2dzπ. There exists constant M>1 such that if B1(0)|S(Dv)S(Du)|2dz=ϵ then

B12(0)|DvRDu|dzcCp2pϵp2MQ5log(10CpQ) for some RSO(2).
Taking u=Id we obtain a special case of the quantitative rigidity result of Friesecke, James and Müller [13]. Our main result can be considered as a first step in a new line of generalization of Theorem 1 of [13] in which Id is replaced by a mapping of non-trivial degree.

DOI : 10.1016/j.anihpc.2014.08.003
Classification : 30C65, 26B99
Mots clés : Rigidity, Liouville's Theorem, Symmetric part of gradient, Reshetnyak
@article{AIHPC_2016__33_1_23_0,
     author = {Lorent, Andrew},
     title = {Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {23--65},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.08.003},
     mrnumber = {3436426},
     zbl = {1328.30014},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.08.003/}
}
TY  - JOUR
AU  - Lorent, Andrew
TI  - Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 23
EP  - 65
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.08.003/
DO  - 10.1016/j.anihpc.2014.08.003
LA  - en
ID  - AIHPC_2016__33_1_23_0
ER  - 
%0 Journal Article
%A Lorent, Andrew
%T Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 23-65
%V 33
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.08.003/
%R 10.1016/j.anihpc.2014.08.003
%G en
%F AIHPC_2016__33_1_23_0
Lorent, Andrew. Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 23-65. doi : 10.1016/j.anihpc.2014.08.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.08.003/

[1] Adams, R.A.; Fournier, J.F. Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003 (xiv+305 pp) | MR | Zbl

[2] Ahlfors, L. Lectures on Quasiconformal Mappings, University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006 (With supplemental chapters by C.J. Earle, I. Kra, M. Shishikura, J.H. Hubbard viii+162 pp) | MR | Zbl

[3] Astala, K.; Iwaniec, T.; Martin, G. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009 (xviii+677 pp) | MR | Zbl

[4] Astala, K.; Faraco, D. Quasiregular mappings and Young measures, Proc. R. Soc. Edinb., Sect. A, Volume 132 (2002) no. 5, pp. 1045–1056 | DOI | MR | Zbl

[5] Chaudhuri, N.; Müller, S. Rigidity estimate for two incompatible wells, Calc. Var. Partial Differ. Equ., Volume 19 (2004) no. 4, pp. 379–390 | DOI | MR | Zbl

[6] Ciarlet, P.G.; Mardare, C. Continuity of a deformation in H1 as a function of its Cauchy–Green tensor in L1 , J. Nonlinear Sci., Volume 14 (2004) no. 5, pp. 415–427 | DOI | MR | Zbl

[7] Ciarlet, P.G.; Laurent, F. Continuity of a deformation as a function of its Cauchy–Green tensor, Arch. Ration. Mech. Anal., Volume 167 (2003) no. 3, pp. 255–269 | DOI | MR | Zbl

[8] Ciarlet, P.G.; Larsonneur, F. On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl. (9), Volume 81 (2002) no. 2, pp. 167–185 | DOI | MR | Zbl

[9] De Lellis, C.; Szekelyhidi, L.J. Simple proof of two well rigidity, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 5, pp. 367–370 | DOI | MR | Zbl

[10] Evans, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010 | MR | Zbl

[11] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992 | MR | Zbl

[12] Faraco, D.; Zhong, X. Geometric rigidity of conformal matrices, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 4 (2005) no. 4, pp. 557–585 | Numdam | MR | Zbl

[13] Friesecke, G.; James, R.D.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461–1506 | DOI | MR | Zbl

[14] Friesecke, G.; James, R.D.; Müller, S. The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 2, pp. 201–206 | DOI | MR | Zbl

[15] Friesecke, G.; James, R.D.; Müller, S. A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal., Volume 180 (2006) no. 2, pp. 183–236 | DOI | MR | Zbl

[16] John, F. Rotation and strain, Commun. Pure Appl. Math., Volume 14 (1961), pp. 391–413 | DOI | MR | Zbl

[17] Kohn, R.V. New integral estimates for deformations in terms of their nonlinear strains, Arch. Ration. Mech. Anal., Volume 78 (1982) no. 2, pp. 131–171 | MR | Zbl

[18] Liouville, J. Théoréme sur l'équation dx2+dy2+dz2=λ(dα2+dβ2+dγ2) , J. Math. Pures Appl., Volume 1 (1850) no. 15, pp. 103

[19] Lorent, A. On functions whose symmetric part of gradient agree and a generalization of Reshetnyak's compactness theorem, Calc. Var. Partial Differ. Equ., Volume 48 (2013) no. 3–4, pp. 625–665 | MR | Zbl

[20] Lorent, A. A generalized Stoilow decomposition for pairs of mappings of integrable dilatation, Adv. Calc. Var., Volume 7 (2014) no. 3, pp. 327–351 | DOI | MR | Zbl

[21] A. Lorent, An example related to rigidity of Quasiregular mappings, in preparation.

[22] Matos, J.P. Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math., Volume 3 (1992) no. 1, pp. 31–54 | DOI | MR | Zbl

[23] Reshetnyak, Yu.G. Stability Theorems in Geometry and Analysis, Mathematics and Its Applications, vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994 | MR | Zbl

Cité par Sources :