We prove that for every and for every potential , any nonnegative function satisfying in an open connected set of is either identically zero or its level set has zero capacity. This gives an affirmative answer to an open problem of Bénilan and Brezis concerning a bridge between Serrin–Stampacchia's strong maximum principle for and Ancona's strong maximum principle for . The proof is based on the construction of suitable test functions depending on the level set , and on the existence of solutions of the Dirichlet problem for the Schrödinger operator with diffuse measure data.
Mots-clés : Maximum principle, Schrödinger operator, Kato's inequality, Capacity
@article{AIHPC_2016__33_2_477_0, author = {Orsina, Luigi and Ponce, Augusto C.}, title = {Strong maximum principle for {Schr\"odinger} operators with singular potential}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {477--493}, publisher = {Elsevier}, volume = {33}, number = {2}, year = {2016}, doi = {10.1016/j.anihpc.2014.11.004}, zbl = {1342.35083}, mrnumber = {3465383}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.11.004/} }
TY - JOUR AU - Orsina, Luigi AU - Ponce, Augusto C. TI - Strong maximum principle for Schrödinger operators with singular potential JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 477 EP - 493 VL - 33 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.11.004/ DO - 10.1016/j.anihpc.2014.11.004 LA - en ID - AIHPC_2016__33_2_477_0 ER -
%0 Journal Article %A Orsina, Luigi %A Ponce, Augusto C. %T Strong maximum principle for Schrödinger operators with singular potential %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 477-493 %V 33 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.11.004/ %R 10.1016/j.anihpc.2014.11.004 %G en %F AIHPC_2016__33_2_477_0
Orsina, Luigi; Ponce, Augusto C. Strong maximum principle for Schrödinger operators with singular potential. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 477-493. doi : 10.1016/j.anihpc.2014.11.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.11.004/
[1] Function Spaces and Potential Theory, Grundlehren Math. Wiss., vol. 314, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[2] Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique, Commun. Partial Differ. Equ., Volume 4 (1979), pp. 321–337 | MR | Zbl
[3] Elliptic operators, conormal derivatives and positive parts of functions, J. Funct. Anal., Volume 257 (2009), pp. 2124–2158 (with an appendix by H. Brezis) | MR | Zbl
[4] Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), Volume 34 (1984), pp. 185–206 | Numdam | MR | Zbl
[5] Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equ., Volume 3 (2004), pp. 673–770 (dedicated to Ph. Bénilan) | MR | Zbl
[6] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996), pp. 539–551 | Numdam | MR | Zbl
[7] Sur l'allure des fonctions harmoniques et sousharmoniques à la frontière, Math. Nachr., Volume 4 (1951), pp. 298–307 | MR | Zbl
[8] Nonlinear elliptic equations with measures revisited, Mathematical aspects of nonlinear dispersive equations, Ann. Math. Stud., vol. 163, Princeton University Press, Princeton, NJ, 2007, pp. 55–109 | MR | Zbl
[9] Remarks on the strong maximum principle, Differ. Integral Equ., Volume 16 (2003), pp. 1–12 | MR | Zbl
[10] Kato's inequality when Δu is a measure, C. R. Math. Acad. Sci. Paris, Volume 338 (2004), pp. 599–604 | MR | Zbl
[11] Kato's inequality up to the boundary, Commun. Contemp. Math., Volume 10 (2008), pp. 1217–1241 | MR | Zbl
[12] On the integral representation of certain local functionals, Ric. Mat., Volume 32 (1983), pp. 85–113 | MR | Zbl
[13] Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 28 (1999), pp. 741–808 | Numdam | MR | Zbl
[14] Extension de la méthode du balayage de Poincaré et problème de Dirichlet, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1932), pp. 169–232 | Numdam | MR | Zbl
[15] Potentiel et problème généralisé de Dirichlet, Math. Gaz., Volume 22 (1938), pp. 17–36 | JFM | Zbl
[16] Topologies fines et compactifications associées à certains espaces de Dirichlet, Ann. Inst. Fourier (Grenoble), Volume 27 (1977), pp. 121–146 | Numdam | MR | Zbl
[17] Resolution of a semilinear equation in , Proc. R. Soc. Edinb. A, Volume 96 (1984), pp. 275–288 (Corrigendum) | MR | Zbl
[18] Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, 1998 | MR | Zbl
[19] Schrödinger operators with singular potentials, Isr. J. Math., Volume 13 (1972), pp. 135–148 | MR | Zbl
[20] Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Super. Pisa (3), Volume 17 (1963), pp. 43–77 | Numdam | MR | Zbl
[21] On the uniqueness and simplicity of the principal eigenvalue, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9), Mat. Appl., Volume 16 (2005), pp. 133–142 | MR | Zbl
[22] Problems of mathematical analysis, No. 3: Integral and differential operators, Differential equations, J. Sov. Math., Volume 1 (1972), pp. 33–68 (English transl.:, 1973, 205–234) | Zbl
[23] Theory of Sobolev Multipliers, Grundlehren Math. Wiss., vol. 337, Springer-Verlag, Berlin, 2009 | MR | Zbl
[24] The sub-supersolution method for weak solutions, Proc. Am. Math. Soc., Volume 136 (2008), pp. 2429–2438 | MR | Zbl
[25] On Harnack's theorem for elliptic differential equations, Commun. Pure Appl. Math., Volume 14 (1961), pp. 577–591 | MR | Zbl
[26] Semilinear elliptic equations and systems with diffuse measures, J. Evol. Equ., Volume 8 (2008), pp. 781–812 | MR | Zbl
[27] Selected problems on elliptic equations involving measures, 2012 (winner monograph of the Concours annuel 2012 in Mathematics of the Académie royale de Belgique) | arXiv
[28] Elliptic PDEs, Measures and Capacities. From the Poisson Equation to Nonlinear Thomas–Fermi Problems, EMS Tracts Math., vol. 23, European Mathematical Society (EMS), Zürich, 2015 (winner of the 2014 EMS Monograph Award) | MR | Zbl
[29] Généralisation de la notion de fonction, de dérivation, de transformation de Fourier et applications mathématiques et physiques, Ann. Univ. Grenoble Sect. Sci. Math. Phys. (N.S.), Volume 21 (1945), pp. 57–74 | Numdam | MR | Zbl
[30] Local behavior of solutions of quasi-linear equations, Acta Math., Volume 111 (1964), pp. 247–302 | MR | Zbl
[31] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), Volume 15 (1965), pp. 189–258 | Numdam | MR | Zbl
[32] Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., vol. 30, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl
[33] Linear elliptic operators with measurable coefficients, Ann. Sc. Norm. Super. Pisa (3), Volume 27 (1973), pp. 265–308 | Numdam | MR | Zbl
[34] Symmetry of solutions of semilinear elliptic problems, J. Eur. Math. Soc., Volume 10 (2008), pp. 439–456 | MR | Zbl
Cité par Sources :