Differential Geometry/Probability Theory
Ricci curvature of metric spaces
[Courbure de Ricci des espaces métriques]
Comptes Rendus. Mathématique, Tome 345 (2007) no. 11, pp. 643-646.

Nous définissons la courbure de Ricci d'un espace métrique muni d'une mesure ou d'une marche aléatoire. Notre outil est un coefficient de contraction local de la marche aléatoire agissant sur l'espace des mesures de probabilités muni d'une distance de transport. Nous pouvons ainsi généraliser des résultats classiques en courbure de Ricci minorée, comme la borne sur le trou spectral (théorème de Lichnerowicz), la concentration gaussienne de la mesure (théorème de Lévy–Gromov), l'inégalité de Sobolev logarithmique (conséquence de la théorie de Bakry–Émery) ou le théorème de Bonnet–Myers. Notre définition est compatible avec la théorie de Bakry–Émery, est robuste, et très simple à mettre en œuvre concrètement, par exemple sur un graphe.

We define a notion of Ricci curvature in metric spaces equipped with a measure or a random walk. For this we use a local contraction coefficient of the random walk acting on the space of probability measures equipped with a transportation distance. This notions allows to generalize several classical theorems associated with positive Ricci curvature, such as a spectral gap bound (Lichnerowicz theorem), Gaussian concentration of measure (Lévy–Gromov theorem), logarithmic Sobolev inequalities (a result of Bakry–Émery theory) or the Bonnet–Myers theorem. The definition is compatible with Bakry–Émery theory, and is robust and very easy to implement in concrete examples such as graphs.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.10.041
Ollivier, Yann 1

1 CNRS, UMPA, École normale supérieure de Lyon, 46, allée d'Italie, 69007 Lyon, France
@article{CRMATH_2007__345_11_643_0,
     author = {Ollivier, Yann},
     title = {Ricci curvature of metric spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {643--646},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.041},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2007.10.041/}
}
TY  - JOUR
AU  - Ollivier, Yann
TI  - Ricci curvature of metric spaces
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 643
EP  - 646
VL  - 345
IS  - 11
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2007.10.041/
DO  - 10.1016/j.crma.2007.10.041
LA  - en
ID  - CRMATH_2007__345_11_643_0
ER  - 
%0 Journal Article
%A Ollivier, Yann
%T Ricci curvature of metric spaces
%J Comptes Rendus. Mathématique
%D 2007
%P 643-646
%V 345
%N 11
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2007.10.041/
%R 10.1016/j.crma.2007.10.041
%G en
%F CRMATH_2007__345_11_643_0
Ollivier, Yann. Ricci curvature of metric spaces. Comptes Rendus. Mathématique, Tome 345 (2007) no. 11, pp. 643-646. doi : 10.1016/j.crma.2007.10.041. http://archive.numdam.org/articles/10.1016/j.crma.2007.10.041/

[1] R. Bubley, M.E. Dyer, Path Coupling: A technique for proving rapid mixing in Markov chains, in: FOCS 1997, pp. 223–231

[2] Bakry, D.; Émery, M. Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984) no. 15, pp. 775-778

[3] Bakry, D.; Émery, M. Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177-206

[4] Diaconis, P.; Saloff-Coste, L. Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab., Volume 6 (1996) no. 3, pp. 695-750

[5] Dobrushin, R. Perturbation methods of the theory of Gibbsian fields (Dobrushin, R.; Groeneboom, P.; Ledoux, M.; Bernard, P., eds.), Lectures on Probability Theory and Statistics Lectures from the 24th Saint-Flour Summer School held July 7–23, 1994, Lecture Notes in Mathematics, vol. 1648, Springer, Berlin, 1996, pp. 1-66

[6] Gromov, M.; Milman, V.; Schechtman, G. Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics, vol. 1200, Springer, Berlin, 1986

[7] A. Joulin, Poisson-type deviation inequalities for curved continuous time Markov chains, preprint

[8] Ledoux, M. The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, Amer. Math. Soc., 2001

[9] J. Lott, Optimal transport and Ricci curvature for metric-measure spaces, expository manuscript

[10] J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, preprint

[11] Martinelli, F. Relaxation times of Markov chains in statistical mechanics and combinatorial structures (Kesten, H., ed.), Probability on Discrete Structures, Encyclopaedia of Mathematical Sciences, vol. 110, Springer, Berlin, 2004, pp. 175-262

[12] S.-i. Ohta, On the measure contraction property of metric measure spaces, preprint

[13] Imbuzeiro Oliveira, R. On the convergence to equilibrium of Kac's random walk on matrices (preprint) | arXiv

[14] Ollivier, Y. Ricci curvature of Markov chains on metric spaces (preprint) | arXiv

[15] von Renesse, M.-K.; Sturm, K.-T. Transport inequalities, gradient estimates, and Ricci curvature, Comm. Pure Appl. Math., Volume 68 (2005), pp. 923-940

[16] Sturm, K.-T. On the geometry of metric measure spaces, Acta Math., Volume 196 (2006) no. 1, pp. 65-177

[17] Villani, C. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, Amer. Math. Soc., 2003

Cité par Sources :