@article{ASENS_2002_4_35_2_267_0, author = {Dehornoy, Patrick}, title = {Groupes de {Garside}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {267--306}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 35}, number = {2}, year = {2002}, doi = {10.1016/s0012-9593(02)01090-x}, mrnumber = {1914933}, zbl = {1017.20031}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(02)01090-x/} }
TY - JOUR AU - Dehornoy, Patrick TI - Groupes de Garside JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 267 EP - 306 VL - 35 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(02)01090-x/ DO - 10.1016/s0012-9593(02)01090-x LA - fr ID - ASENS_2002_4_35_2_267_0 ER -
Dehornoy, Patrick. Groupes de Garside. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 35 (2002) no. 2, pp. 267-306. doi : 10.1016/s0012-9593(02)01090-x. http://archive.numdam.org/articles/10.1016/s0012-9593(02)01090-x/
[1] On the embeddability of semigroups, Soviet Math. Dokl. 1 (4) (1960) 819-820. | MR | Zbl
,[2] Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR 36 (1) (1984) 25-34, traduction: Math. Notes of the Acad. Sci. USSR 36 (1) (1984) 505-510. | MR | Zbl
,[3] Baumslag G., Miller III C.F. (Eds.), Algorithms and Classification in Combinatorial Group Theory, MSRI Publications, Vol. 23, Springer-Verlag, 1992. | MR | Zbl
[4] Bessis D., Digne F., Michel J., Springer theory in braid groups and the Birman-Ko-Lee monoid, Prépublication, 2000.
[5] Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972) 245-271. | MR | Zbl
, ,[6] Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998) 127-190. | MR | Zbl
, , ,[7] Finitely presented simple groups and product of trees, C. R. Acad. Sci. Paris 324 (1) (1997) 747-752. | MR | Zbl
, ,[8] Artin groups of finite type are biautomatic, Math. Ann. 292 (4) (1992) 671-683. | MR | Zbl
,[9] Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 (2) (1995) 307-324. | MR | Zbl
,[10] The Algebraic Theory of Semigroups, Vol. 1, Amer. Math. Soc. Surveys, 7, 1961. | MR | Zbl
, ,[11] Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris 315 (1992) 633-638. | MR | Zbl
,[12] Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1) (1994) 115-151. | MR | Zbl
,[13] Groups with a complemented presentation, J. Pure Appl. Algebra 116 (1997) 115-137. | MR | Zbl
,[14] Gaussian groups are torsion free, J. Algebra 210 (1998) 291-297. | MR | Zbl
,[15] On completeness of word reversing, Discrete Math. 225 (2000) 93-119. | MR | Zbl
,[16] Braids and Self-Distributivity, Progress in Math., 192, Birkhäuser, 2000. | MR | Zbl
,[17] Garside groups, a generalization of Artin groups, Proc. London Math. Soc. 79 (3) (1999) 569-604. | MR | Zbl
, ,[18] Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273-302. | MR | Zbl
,[19] Algorithms for positive braids, Quart. J. Math. Oxford 45 (2) (1994) 479-497. | MR | Zbl
, ,[20] Word Processing in Groups, Jones & Barlett, 1992.
et al. ,[21] The braid group and other groups, Quart. J. Math. Oxford 20 (78) (1969) 235-254. | MR | Zbl
,[22] A note on words in braid monoids, J. Algebra 215 (1999) 366-377. | MR | Zbl
,[23] The conjugacy problem in small Gaussian groups, Comm. Algebra 29 (3) (2001) 1021-1038. | MR | Zbl
,[24] The center of thin Gaussian groups, J. Algebra 245 (1) (2001) 92-122. | MR | Zbl
,[25] On the geometry of semigroup presentations, Adv. Math. 36 (1980) 283-296. | MR | Zbl
,[26] An isoperimetric inequality for Artin groups of finite type, Trans. Amer. Math. Soc. 339 (2) (1993) 537-551. | MR | Zbl
,[27] Thurston W., Finite state algorithms for the braid group, notes en circulation, 1988.
Cited by Sources: