@article{ASENS_2002_4_35_3_423_0, author = {Stevens, Shaun}, title = {Semisimple strata for $p$-adic classical groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {423--435}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {3}, year = {2002}, doi = {10.1016/s0012-9593(02)01095-9}, zbl = {1009.22017}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(02)01095-9/} }
TY - JOUR AU - Stevens, Shaun TI - Semisimple strata for $p$-adic classical groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 423 EP - 435 VL - 35 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(02)01095-9/ DO - 10.1016/s0012-9593(02)01095-9 LA - en ID - ASENS_2002_4_35_3_423_0 ER -
%0 Journal Article %A Stevens, Shaun %T Semisimple strata for $p$-adic classical groups %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 423-435 %V 35 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(02)01095-9/ %R 10.1016/s0012-9593(02)01095-9 %G en %F ASENS_2002_4_35_3_423_0
Stevens, Shaun. Semisimple strata for $p$-adic classical groups. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 35 (2002) no. 3, pp. 423-435. doi : 10.1016/s0012-9593(02)01095-9. http://archive.numdam.org/articles/10.1016/s0012-9593(02)01095-9/
[1] Auzende F., Construction de types à la Bushnell et Kutzko dans les groupes Sp2N et SO2N, Prépublication 98-15 du LMENS, 1998.
[2] Types induits des paraboliques maximaux de Sp4(F) et GSp4(F), Ann. Inst. Fourier (Grenoble) 49 (6) (1999) 1805-1851. | Numdam | MR | Zbl
, ,[3] Minimal strata for GL(m,D), J. Reine Angew. Math. 514 (1) (1999) 199-236. | MR | Zbl
,[4] Broussous P., The building of GL(m,D) as a space of lattice functions, Preprint, King's College London, 1998.
[5] Hereditary orders, Gauss sums, and supercuspidal representations of GLN, J. Reine Angew. Math. 375/376 (1987) 184-210. | MR | Zbl
,[6] The Admissible Dual of GL(N) via Compact Open Subgroups, Princeton University Press, 1993. | MR
, ,[7] Semisimple types, Compositio Math. 119 (1999) 53-97. | MR | Zbl
, ,[8] Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998) 582-634. | MR | Zbl
, ,[9] Bushnell C.J., Kutzko P.C., Supercuspidal representations of GL(N), Manuscript, King's College London, 1996.
[10] Minimal K-types for GLn over a p-adic field, SMF, Astérisque 171-172 (1989) 257-273. | MR | Zbl
, ,[11] Towards a classification of the supercuspidal representations of GLN, J. London Math. Soc. (2) 37 (1988) 265-274. | MR | Zbl
,[12] Strates scindées pour un groupe réductif p-adique, C. R. Acad. Sci. Paris Sér. I Math. 326 (4) (1998) 407-410. | MR | Zbl
,[13] Fundamental G-strata for p-adic classical groups, Duke Math. J. 64 (1991) 501-553. | MR | Zbl
,[14] Tamely ramified supercuspidal representations of classical groups I: Filtrations, Ann. Sci. École Norm. Sup. (4) 24 (6) (1991) 705-738. | Numdam | MR | Zbl
,[15] Level zero G-types, Compositio Math. 118 (2) (1999) 135-157. | MR | Zbl
,[16] Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994) 393-408. | MR | Zbl
, ,[17] Jacquet functors and unrefined minimal K-types, Comment. Math. Helv. 71 (1) (1996) 98-121. | MR | Zbl
, ,[18] Pan S.-Y., Yu J.-K., Unrefined minimal -types for -adic classical groups, Manuscript, Princeton University, 1998.
[19] Double coset decompositions and intertwining, Manuscripta Math. 106 (2001) 349-364. | MR | Zbl
,[20] Intertwining and supercuspidal types for classical p-adic groups, Proc. London Math. Soc. (3) 83 (2001) 120-140. | MR | Zbl
,Cited by Sources: