We address in this article the computation of the convex solutions of the Dirichlet problem for the real elliptic Monge - Ampère equation for general convex domains in two dimensions. The method we discuss combines a least-squares formulation with a relaxation method. This approach leads to a sequence of Poisson - Dirichlet problems and another sequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure are used for the computer implementation of our least-squares/relaxation methodology. Domains with curved boundaries are easily accommodated. Numerical experiments show the convergence of the computed solutions to their continuous counterparts when such solutions exist. On the other hand, when classical solutions do not exist, our methodology produces solutions in a least-squares sense.
Keywords: Monge − ampère equation, least-squares method, biharmonic problem, conjugate gradient method, quadratic constraint minimization, mixed finite element methods
@article{COCV_2013__19_3_780_0, author = {Caboussat, Alexandre and Glowinski, Roland and Sorensen, Danny C.}, title = {A least-squares method for the numerical solution of the {Dirichlet} problem for the elliptic monge-amp\`ere equation in dimension two}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {780--810}, publisher = {EDP-Sciences}, volume = {19}, number = {3}, year = {2013}, doi = {10.1051/cocv/2012033}, mrnumber = {3092362}, zbl = {1272.65089}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2012033/} }
TY - JOUR AU - Caboussat, Alexandre AU - Glowinski, Roland AU - Sorensen, Danny C. TI - A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge-ampère equation in dimension two JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 780 EP - 810 VL - 19 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2012033/ DO - 10.1051/cocv/2012033 LA - en ID - COCV_2013__19_3_780_0 ER -
%0 Journal Article %A Caboussat, Alexandre %A Glowinski, Roland %A Sorensen, Danny C. %T A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge-ampère equation in dimension two %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 780-810 %V 19 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2012033/ %R 10.1051/cocv/2012033 %G en %F COCV_2013__19_3_780_0
Caboussat, Alexandre; Glowinski, Roland; Sorensen, Danny C. A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge-ampère equation in dimension two. ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, pp. 780-810. doi : 10.1051/cocv/2012033. http://archive.numdam.org/articles/10.1051/cocv/2012033/
[1] Uniqueness conditions and estimates for the solution of the Dirichlet problem. Amer. Math. Soc. Trans. 68 (1968) 89-119. | Zbl
,[2] Two numerical methods for the elliptic Monge − Ampère equation. ESAIM: M2AN 44 (2010) 737-758. | Numdam | MR | Zbl
, and ,[3] Modulef, a modular library of finite elements. Technical report, INRIA (1988). | Zbl
, , , , , , , , and ,[4] Least-Squares Finite Element Methods. Springer-Verlag, New York (2009). | MR | Zbl
and ,[5] On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46 (2008) 1212-1249. | MR | Zbl
,[6] S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, c0 penalty methods for the fully nonlinear Monge − Ampere equation. Math. Comput. 80 (2011) 1979-1995. | MR | Zbl
[7] Finite element approximations of the three dimensional Monge − Ampère equation. ESAIM: M2AN 46 (2012) 979-1001. | Numdam | MR | Zbl
and ,[8] Mixed and Hybrid Finite Element Methods. Springer-Verlag, NewYork (1991). | MR | Zbl
and ,[9] Regularization methods for the numerical solution of the divergence equation ∇·u = f. J. Comput. Math. 30 (2012) 354-380. | MR | Zbl
and ,[10] Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete Contin. Dyn. Systems 8 (2002) 289-302. | MR | Zbl
,[11] Nonlinear elliptic theory and the Monge − Ampère equation, in Proc. of the International Congress of Mathematicians. Higher Education Press, Beijing (2002) 179-187. | MR | Zbl
,[12] Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence, RI (1995). | MR | Zbl
and ,[13] Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16 (2008) 185-216. | MR | Zbl
and ,[14] On the numerical solution of reflector design with given far field scattering data, in Monge − Ampère Equation: Application to Geometry and Optimization, American Mathematical Society, Providence, RI (1999) 13-32. | MR | Zbl
, and ,[15] User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, and ,[16] Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779-784. | MR | Zbl
and ,[17] Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 887-892. | MR | Zbl
and ,[18] Numerical solution of a two-dimensional elliptic Pucci's equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 341 (2005) 374-380. | MR | Zbl
and ,[19] An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge − Ampère equation in two dimensions. Electronic Transactions in Numerical Analysis 22 (2006) 71-96. | MR | Zbl
and ,[20] Numerical methods for fully nonlinear elliptic equations of the Monge − Ampère type. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 1344-1386. | MR | Zbl
and ,[21] On the numerical solution of the elliptic Monge − Ampère equation in dimension two: A least-squares approach, in Partial Differential Equations: Modeling and Numerical Simulation, vol. 16 of Comput. Methods Appl. Sci., edited by R. Glowinski and P. Neittaanmäki. Springer (2008) 43-63. | MR | Zbl
and ,[22] Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge − Ampère equation. in Control and Boundary Analysis, edited by J.P. Zolésio J. Cagnol, CRC Boca Raton, FLA (2005) 1-27. | MR | Zbl
, and ,[23] An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation. Jpn J. Ind. Appl. Math. 13 (1996) 495-517. | MR | Zbl
, and ,[24] Mixed finite element methods for the fully nonlinear Monge − Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226-1250. | MR | Zbl
and ,[25] Vanishing moment method and moment solutions of second order fully nonlinear partial differential equations. J. Sci. Comput. 38 (2009) 74-98. | MR | Zbl
and ,[26] Convergent finite difference solvers for viscosity solutions of the elliptic Monge − Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692-1715. | MR | Zbl
and ,[27] Fast finite difference solvers for singular solutions of the elliptic Monge − Ampère equation. J. Comput. Phys. 230 (2011) 818-834. | MR | Zbl
and ,[28] Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79 (2009) 1309-1331. | MR | Zbl
and ,[29] Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). | MR | Zbl
and ,[30] Finite Element Methods For Incompressible Viscous Flow, Handbook of Numerical Analysis, edited by P.G. Ciarlet, J.L. Lions. Elsevier, Amsterdam IX (2003) 3-1176. | MR | Zbl
,[31] Numerical Methods for Nonlinear Variational Problems. 2nd edition, Springer-Verlag, New York, NY (2008). | MR | Zbl
,[32] Numerical methods for fully nonlinear elliptic equations. in Invited Lectures, 6th Int. Congress on Industrial and Applied Mathematics, Zürich, Switzerland, 16-20 July 2007. EMS (2009) 155-192. | MR | Zbl
,[33] Applications of operator-splitting methods to the direct numerical simulation of particulate and free surface flows and to the numerical solution of the two-dimensional Monge − Ampère equation. Jpn J. Ind. Appl. Math. 25 (2008) 1-63. | MR | Zbl
, , , and ,[34] Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2008). | Zbl
, and ,[35] Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J. Numer. Anal. 4 (1984) 127-167. | MR | Zbl
, and ,[36] Numerical methods for the first bi-harmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 17 (1979) 167-212. | MR | Zbl
and ,[37] The Monge − Ampère Equation. Birkhaüser, Boston (2001). | Zbl
,[38] A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation. Comput. Methods Appl. Mech. Engrg. 59 (1986) 85-100. | MR | Zbl
, and ,[39] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Eq. 83 (1990) 26-78. | MR | Zbl
and ,[40] Numerical solution of the Monge − Ampère equation by a Newton's algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319-324. | MR | Zbl
and ,[41] Optimal transport, shape optimization and global minimization. C. R. Acad Sci Paris, Ser. I 351 (2007) 591-596. | MR | Zbl
,[42] A nonconforming Morley finite element method for the fully nonlinear Monge − Ampère equation. Numer. Math. 115 (2010) 371-394. | MR | Zbl
,[43] Wide stencil finite difference schemes for the elliptic Monge − Ampère equations and functions of the eigenvalues of the Hessian. Discr. Contin. Dyn. Syst. B 10 (2008) 221-238. | MR | Zbl
,[44] On the numerical solution of the equation | MR | Zbl
and ,[45] A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes. SIAM J. Sci. Comput. 33 (2011) 1058-1076. | MR | Zbl
, , and ,[46] Monge − Ampère Equations of Elliptic Type. P. Noordhooff, Ltd, Groningen, Netherlands (1964). | Zbl
,[47] On the numerical analysis of the Von Kármán equation: mixed finite element approximation and continuation techniques. Numer. Math. 39 (1982) 371-404. | MR | Zbl
,[48] A quadratically constrained minimization problem arising from PDE of Monge − Ampère type. Numer. Algor. 53 (2010) 53-66. | MR | Zbl
and ,[49] The regularization of incorrectly posed problems. Doklady Akad. Nauk. SSSR 153 (1963) 42-52. | MR | Zbl
,[50] The Monge − Ampère equation: Various forms and numerical solution. J. Comput. Phys. 229 (2010) 5043-5061. | MR | Zbl
, and ,Cited by Sources: