A singular controllability problem with vanishing viscosity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 116-140.

The aim of this paper is to answer the question: Do the controls of a vanishing viscosity approximation of the one dimensional linear wave equation converge to a control of the conservative limit equation? The characteristic of our viscous term is that it contains the fractional power α of the Dirichlet Laplace operator. Through the parameter α we may increase or decrease the strength of the high frequencies damping which allows us to cover a large class of dissipative mechanisms. The viscous term, being multiplied by a small parameter ε devoted to tend to zero, vanishes in the limit. Our analysis, based on moment problems and biorthogonal sequences, enables us to evaluate the magnitude of the controls needed for each eigenmode and to show their uniform boundedness with respect to ε, under the assumption that α∈[0,1)\{½}. It follows that, under this assumption, our starting question has a positive answer.

DOI : 10.1051/cocv/2013057
Classification : 93B05, 30E05, 35E20
Mots-clés : wave equation, null-controllability, vanishing viscosity, moment problem, biorthogonals
@article{COCV_2014__20_1_116_0,
     author = {Bugariu, Ioan Florin and Micu, Sorin},
     title = {A singular controllability problem with vanishing viscosity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {116--140},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     doi = {10.1051/cocv/2013057},
     mrnumber = {3182693},
     zbl = {1282.93047},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013057/}
}
TY  - JOUR
AU  - Bugariu, Ioan Florin
AU  - Micu, Sorin
TI  - A singular controllability problem with vanishing viscosity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 116
EP  - 140
VL  - 20
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013057/
DO  - 10.1051/cocv/2013057
LA  - en
ID  - COCV_2014__20_1_116_0
ER  - 
%0 Journal Article
%A Bugariu, Ioan Florin
%A Micu, Sorin
%T A singular controllability problem with vanishing viscosity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 116-140
%V 20
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013057/
%R 10.1051/cocv/2013057
%G en
%F COCV_2014__20_1_116_0
Bugariu, Ioan Florin; Micu, Sorin. A singular controllability problem with vanishing viscosity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 116-140. doi : 10.1051/cocv/2013057. http://archive.numdam.org/articles/10.1051/cocv/2013057/

[1] S.A. Avdonin and S.A. Ivanov, Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press (1995). | MR | Zbl

[2] C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013) 39-71. | MR | Zbl

[3] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Eqs. 32 (2007) 1245-1260. | MR | Zbl

[4] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equation. Oxford University Press Inc., New York (1998). | MR | Zbl

[5] S. Chen and R. Triggiani, Proof of Extensions of Two Conjectures on Structural Damping for Elastic Systems. Pacific J. Math. 136 (1989) 15-55. | MR | Zbl

[6] S. Chen and R. Triggiani, Characterization of Domains of Fractional Powers of Certain Operators Arising in Elastic Systems and Applications. J. Differ. Eqs. 88 (1990) 279-293. | MR | Zbl

[7] J.M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs. Amer. Math. Soc. Providence, RI 136 (2007). | MR | Zbl

[8] J.M. Coron and S. Guerrero, Singular optimal control: a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237-257. | MR | Zbl

[9] Q.-Y. Guan and Z.-M. Ma, Boundary problems for fractional Laplacians. Stoch. Dyn. 5 (2005) 385-424. | MR | Zbl

[10] R.J. Diperna, Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82 (1983) 27-70. | MR | Zbl

[11] J. Edward, Ingham-type inequalities for complex frequencies and applications to control theory. J. Math. Appl. 324 (2006) 941-954. | MR | Zbl

[12] H.O. Fattorini and D.L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Q. Appl. Math. 32 (1974/75) 45-69. | MR | Zbl

[13] H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43 (1971) 272-292. | MR | Zbl

[14] O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852-868. | MR | Zbl

[15] S.W. Hansen, Bounds on Functions Biorthogonal to Sets of Complex Exponentials; Control of Dumped Elastic Systems. J. Math. Anal. Appl. 158 (1991) 487-508. | MR | Zbl

[16] L. Ignat and E. Zuazua, Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equation, Foundations of Computational Mathematics, Santander 2005, London Math.l Soc. Lect. Notes. Edited by L.M. Pardo. Cambridge University Press 331 (2006) 181-207. | MR | Zbl

[17] L. Ignat and E. Zuazua, Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47 (2009) 1366-1390. | MR | Zbl

[18] C. Imbert, A non-local regularization of first order Hamilton-Jacobi equations, J. Differ. Eqs. 211 (2005) 218-246. | MR | Zbl

[19] A.E. Ingham, A note on Fourier transform. J. London Math. Soc. 9 (1934) 29-32. | MR | Zbl

[20] A.E. Ingham, Some trigonometric inequalities with applications to the theory of series Math. Zeits. 41 (1936) 367-379. | MR | Zbl

[21] A. Khapalov, Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls. ESAIM: COCV 4 (1999) 83-98. | Numdam | MR | Zbl

[22] V. Komornik and P. Loreti, Fourier Series in Control Theory. Springer-Verlag, New-York (2005). | MR | Zbl

[23] M. Léautaud, Uniform controllability of scalar conservation laws in the vanishing viscosity limit. SIAM J. Control Optim. 50 (2012) 1661-1699. | MR | Zbl

[24] A. López, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equation. J. Math. Pures Appl. 79 (2000) 741-808. | MR | Zbl

[25] S. Micu, J.H. Ortega and A.F. Pazoto, Null-controllability of a Hyperbolic Equation as Singular Limit of Parabolic Ones. J. Fourier Anal. Appl. 41 (2010) 991-1007. | MR | Zbl

[26] S. Micu and I. Rovenţa, Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity. ESAIM: COCV 18 (2012) 277-293. | Numdam | MR | Zbl

[27] S. Micu and L. De Teresa, A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle, Asymptot. Anal. 66 (2010) 139-160. | MR | Zbl

[28] L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425-444. | MR | Zbl

[29] R.E.A.C. Paley and N. Wiener, Fourier Transforms in Complex Domains. AMS Colloq. Publ. Amer. Math. Soc. New-York 19 (1934). | MR | Zbl

[30] L. Rosier and P. Rouchon, On the Controllability of a Wave Equation with Structural Damping. Int. J. Tomogr. Stat. 5 (2007) 79-84. | MR

[31] D.L. Russel, A unified boundary controllability theory for hyperbolic and parabolic partial differential equation. Stud. Appl. Math. 52 (1973) 189-221. | MR | Zbl

[32] T.I. Seidman, On uniform nullcontrollability and blow-up estimates, Chapter 15 in Control Theory of Partial Differential Equations, edited by O. Imanuvilov, G. Leugering, R. Triggiani and B.Y. Zhang. Chapman and Hall/CRC, Boca Raton (2005) 215-227. | MR | Zbl

[33] O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen. Math. Ann. 77 (1916) 482-496. | JFM | MR

[34] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhuser Advanced Texts. Springer, Basel (2009). | Zbl

[35] R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New-York (1980). | MR | Zbl

[36] J. Zabczyk, Mathematical Control Theory: An Introduction. Birkhuser, Basel (1992). | MR | Zbl

[37] E. Zuazua, Propagation, Observation, Control and Numerical Approximation of Waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197-243. | Zbl

  • Pazoto, Ademir F.; Vieira, Miguel D. Soto Biorthogonal functions for complex exponentials and an application to the controllability of the Kawahara equation via a moment approach, Applied Mathematics and Optimization, Volume 88 (2023) no. 2, p. 22 (Id/No 57) | DOI:10.1007/s00245-023-10032-2 | Zbl:1522.35446
  • Bugariu, Ioan Florin; Rovenţa, Ionel Small time uniform controllability of the linear one-dimensional Schrödinger equation with vanishing viscosity, Journal of Optimization Theory and Applications, Volume 160 (2014) no. 3, pp. 949-965 | DOI:10.1007/s10957-013-0387-4 | Zbl:1292.93026

Cité par 2 documents. Sources : zbMATH