Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 1, pp. 141-157.

We prove uniform continuity of radially symmetric vector minimizers u A ( x ) = U A ( | x | ) to multiple integrals B R L * * ( u ( x ) , | D u ( x ) | ) d x on a ball B R d , among the Sobolev functions u ( · ) in A + W 0 1 , 1 ( B R , m ) , using a jointly convex lsc L * * : m × [ 0 , ] with L * * ( S , · ) even and superlinear. Besides such basic hypotheses, L * * ( · , · ) is assumed to satisfy also a geometrical constraint, which we call quasi - scalar; the simplest example being the biradial case L * * ( | u ( x ) | , | D u ( x ) | ) . Complete liberty is given for L * * ( S , λ ) to take the value, so that our minimization problem implicitly also represents e.g. distributed-parameter optimal control problems, on constrained domains, under PDEs or inclusions in explicit or implicit form. While generic radial functions u ( x ) = U ( | x | ) in this Sobolev space oscillate wildly as | x | 0 , our minimizing profile-curve U A ( · ) is, in contrast, absolutely continuous and tame, in the sense that its “static level L * * ( U A ( r ) , 0 ) always increases with r, a original feature of our result.

DOI: 10.1051/cocv/2013058
Classification: 49J10, 49N60
Keywords: vectorial calculus of variations, vectorial distributed-parameter optimal control, continuous radially symmetric monotone minimizers
@article{COCV_2014__20_1_141_0,
     author = {Bicho, Lu{\'\i}s Balsa and Ornelas, Ant\'onio},
     title = {Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {141--157},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     doi = {10.1051/cocv/2013058},
     mrnumber = {3182694},
     zbl = {1286.49040},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013058/}
}
TY  - JOUR
AU  - Bicho, Luís Balsa
AU  - Ornelas, António
TI  - Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 141
EP  - 157
VL  - 20
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013058/
DO  - 10.1051/cocv/2013058
LA  - en
ID  - COCV_2014__20_1_141_0
ER  - 
%0 Journal Article
%A Bicho, Luís Balsa
%A Ornelas, António
%T Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 141-157
%V 20
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013058/
%R 10.1051/cocv/2013058
%G en
%F COCV_2014__20_1_141_0
Bicho, Luís Balsa; Ornelas, António. Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 1, pp. 141-157. doi : 10.1051/cocv/2013058. http://archive.numdam.org/articles/10.1051/cocv/2013058/

[1] L.B. Bicho and A. Ornelas, Radially increasing minimizing surfaces or deformations under pointwise constraints on positions and gradients. Nonlinear Anal. 74 (2011) 7061-7070. | MR | Zbl

[2] C. Carlota, S. Chá and A. Ornelas, Existence of radially increasing minimizers for nonconvex vectorial multiple integrals in the calculus of variations or optimal control, preprint.

[3] A. Cellina and S. Perrotta, On minima of radially symmetric fuctionals of the gradient. Nonlinear Anal. 23 (1994) 239-249. | MR | Zbl

[4] A. Cellina and M. Vornicescu, On gradient flows. J. Differ. Eqs. 145 (1998) 489-501. | MR | Zbl

[5] G. Crasta, Existence, uniqueness and qualitative properties of minima to radially-symmetric noncoercive nonconvex variational problems. Math. Z. 235 (2000) 569-589. | MR | Zbl

[6] G. Crasta, On the minimum problem for a class of noncoercive nonconvex functionals. SIAM J. Control Optim. 38 (1999) 237-253. | MR | Zbl

[7] G. Crasta and A. Malusa, Euler-Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems. J. Convex Anal. 7 (2000) 167-181. | EuDML | MR | Zbl

[8] I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland, Amsterdam (1976). | MR | Zbl

[9] S. Krömer, Existence and symmetry of minimizers for nonconvex radially symmetric variational problems. Calc. Var. PDEs 32 (2008) 219-236. | MR | Zbl

[10] S. Krömer and H. Kielhöfer, Radially symmetric critical points of non-convex functionals. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 1261-1280. | MR | Zbl

[11] P. Pedregal and A. Ornelas (editors), Mathematical methods in materials science and enginneering. CIM 1997 summerschool with courses by N. Kikuchi, D. Kinderlehrer, P. Pedregal. CIM www.cim.pt (1998).

[12] J. Yeh, Lectures on Real Analysis. World Scientific, Singapore (2006). | MR | Zbl

Cited by Sources: