We prove the existence of a countable family of Delaunay type domains
Mots-clés : Overdetermined elliptic problems, homogeneous manifolds, bifurcation, Laplace–Beltrami operator, Delaunay surfaces
@article{COCV_2016__22_1_1_0, author = {Morabito, Filippo and Sicbaldi, Pieralberto}, title = {Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--28}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {2016}, doi = {10.1051/cocv/2014064}, zbl = {1336.58015}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2014064/} }
TY - JOUR AU - Morabito, Filippo AU - Sicbaldi, Pieralberto TI - Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1 EP - 28 VL - 22 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2014064/ DO - 10.1051/cocv/2014064 LA - en ID - COCV_2016__22_1_1_0 ER -
%0 Journal Article %A Morabito, Filippo %A Sicbaldi, Pieralberto %T Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1-28 %V 22 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2014064/ %R 10.1051/cocv/2014064 %G en %F COCV_2016__22_1_1_0
Morabito, Filippo; Sicbaldi, Pieralberto. Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$. ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 1, pp. 1-28. doi : 10.1051/cocv/2014064. http://archive.numdam.org/articles/10.1051/cocv/2014064/
A Hopf differential for constant mean curvature surfaces in and . Acta Math. 193 (2004) 141–174. | DOI | Zbl
and ,Uniqueness theorems for surfaces in the large. (Russian) Vestnik Leningrad Univ. Math. 11 (1956) 5–17.
,Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. | Zbl
and ,L. Bessières, G. Besson, M. Boileau, S. Maillot and J. Porti, Geometrisation of 3-manifolds. Vol. 13 of EMS Tracts Math. European Mathematical Society, Zurich (2010). | Zbl
Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun. Pure Appl. Math. 50 (1997) 1089–1111. | DOI | Zbl
, and ,I. Chavel, Eigenvalues in Riemannian geometry. Academic Press, Orlando, Florida (1984). | Zbl
Sur la surface de révolution dont la courbure moyenne est constante. With a note appended by M. Sturm. J. Math. Pures Appl. Sér. 1 6 (1841) 309–320.
,Digital Library of Mathematical Functions. Available on http://dlmf.nist.gov/
A. Erdély, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, vol. I. McGraw-Hill Book Company (1953). | Zbl
D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. In Vol. 224 of A Series of Comprehensive Studies in Mathematics, Grundlehren der mathematischen Wissenschaften, 3rd edition. Springer-Verlag, Berlin-Heidelberg-New York (1977, 1983, 1998). | Zbl
A note on some overdetermined problems. Pacific J. Math. 250 (2011) 319–334. | DOI | Zbl
, and ,M.A. Karlovitz, Some solutions to overdetermined boundary value problems on subsets of spheres. University of Maryland at College Park (1990).
T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-Heidelberg-New York (1987). | Zbl
H. Kielhofer, Bifurcation Theory, An Introduction with Applications to PDEs. Appl. Math. Sci. 156 (2004). | Zbl
Serrin’s result for hyperbolic space and sphere. Duke Math. J. 91 (1998) 17–28. | DOI | Zbl
and ,N.N. Lebedev, Special functions and their applications. Dover Publications (1972). | Zbl
The theory of minimal surfaces in . Comment. Math. Helv. 80 (2005) 811–858. | DOI | Zbl
and ,Stable minimal surfaces in . J. Differ. Geom. 68 (2004) 515–534. | Zbl
and ,Symmetry and overdetermined boundary value problems. Forum Math. 3 (1991) 143–156. | DOI | Zbl
,F. Olver, Asymptotics and special functions. AK Peters (1997). | Zbl
Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems. Indiana Univ. Math. J. 48 (1999) 1357–1394. | DOI | Zbl
and ,G. Perelman, The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). | arXiv | Zbl
G. Perelman, Ricci flow with surgery on three-manifolds. Preprint (2003). | arXiv | Zbl
G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Preprint (2003) | arXiv | Zbl
P. Pucci and J. Serrin, The maximum principle. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Basel (2007). | Zbl
Geometry and Topology for some overdetermined elliptic problems. J. Differ. Equ. 255 (2013) 951–977. | DOI | Zbl
and ,Bifurcating extremal domains for the first eigenvalue of the Laplacian. Adv. Math. 229 (2012) 602–632. | DOI | Zbl
and ,A Symmetry Theorem in Potential Theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. | DOI | Zbl
,New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc. Var. Partial Differ. Equ. 37 (2010) 329–344. | DOI | Zbl
,J. Smoller, Shock Waves and Reaction-Diffusion Equations. In Vol. 258 of A Series of Comprehensive Studies in Mathematics, Grundlehren der mathematischen Wissenschaften, edition. Springer-Verlag, Berlin-Heidelberg-New York (1994). | Zbl
I.S. Sokolnikoff, Mathematical theory of elasticity. McGraw-Hill Book Company, Inc., New York-Toronto-London (1956). | Zbl
Classification of the solutions to an overdetermined elliptic problem in the plane. Geom. Funct. Anal. 24 (2014) 690–720. | DOI | Zbl
,Cited by Sources: